Yao C, Fourtakas G, Rogers BD, Lombard D. 2025. 2-D SPH modelling of poroelasticity: u-w-p and u-p formulations with absorbing boundary conditions and volumetric locking treatments. Computers and Geotechnics, 179, 107016. doi:10.1016/j.compgeo.2024.107016.
Ishiki K, Cunningham LS, Rogers BD. 2025. Multiphysics Coupling Using SPH for Coastal Structures Subject to Tsunami-Driven Hydrodynamic and Debris Impact Loads. Journal of Waterway, Port, Coastal, and Ocean Engineering, 151(1), 04024021. doi:10.1061/JWPED5.WWENG-2157.
Capasso S, Tagliafierro B, Martínez-Estévez I, Altomare C, Gómez-Gesteira M, Göteman M, Viccione G. 2025. Development of an SPH-based numerical wave-current tank and application to wave energy converters. Applied Energy, 377B, 124508. doi:10.1016/j.apenergy.2024.124508.
2024
Laha S, Fourtakas G, Das PK, Keshmiri A. 2024. Towards the estimation of wall shear stress in smoothed particle hydrodynamics. Computational Particle Mechanics. doi:10.1007/s40571-024-00879-9.
Hanousek N, Ranabhat B, English A, Ahmadian R. 2024. A Smoothed Particle Hydrodynamics method for vertical axis turbine design and assessment. Journal of Hydrodynamics, 36, 991-1007. doi:10.1007/s42241-024-0074-y.
Ouro P, Cea L, Croquer S, Dong W, Garcia-Feal O, Navas-Montilla A, Rogers BD, Uchida T, Juez C. 2024. Benchmark of computational hydraulics models for open-channel flow with lateral cavities, Journal of Hydraulic Research, 62(5), 441-460. doi:10.1080/00221686.2024.2401905.
Reece G, Rogers BD, Fourtakas G, Lind S. 2024. Buoyancy-driven circulation and multi-component mixing using SPH with a new adiabatic boundary condition. International Journal of Heat and Mass Transfer, 233, 125904. doi:10.1016/j.ijheatmasstransfer.2024.125904.
Feng R, Fourtakas G, Rogers BD, Lombardi D. 2024. Modelling internal erosion using 2D smoothed particle hydrodynamics (SPH), Journal of Hydrology, 639, 131558. doi:10.1016/j.jhydrol.2024.131558.
El Rahi J, Martínez-Estévez I, Almeida Reis R, Tagliafierro B, Domínguez JM, Crespo AJC, Stratigaki V, Suzuki T, Troch P. 2024. Exploring Wave–Vegetation Interaction at Stem Scale: Analysis of the Coupled Flow–Structure Interactions Using the SPH-Based DualSPHysics Code and the FEA Module of Chrono. Journal of Marine Science and Engineering, 12(7), 1120. doi:10.3390/jmse12071120.
Laha S, Fourtakas G, Das PK, Keshmiri A. 2024. Smoothed particle hydrodynamics based FSI simulation of the native and mechanical heart valves in a patient-specific aortic model. Scientific Reports, 14, 6762. doi:10.1038/s41598-024-57177-w.
Quartier N, Vervaet T, Verao-Fernández G, Domínguez JM, Crespo AJC, Stratigaki V, Troch P. 2024. High-fidelity numerical modelling of a two-WEC array with accurate implementation of the PTO system and control strategy using DualSPHysics. Energy, 296, 130888. doi:10.1016/j.energy.2024.130888.
González-Ávalos R, Martínez-Estévez I, Domínguez JM, Gironella X, Crespo AJC, Altomare C. 2024. Numerical simulation of a flexible net in currents with the smoothed particle hydrodynamics method. Ocean Engineering, 300, 117102. doi:10.1016/j.oceaneng.2024.117102.
Feng R, Fourtakas G, Rogers BD, Lombardi D. 2024. A general smoothed particle hydrodynamics (SPH) formulation for coupled liquid flow and solid deformation in porous media. Computer Methods in Applied Mechanics and Engineering, 419, 116581. doi:10.1016/j.cma.2023.116581.
Yang Y, English A, Rogers BD, Stansby PK, Stagonas D, Buldakov E, Draycott S. 2024. Numerical modelling of a vertical cylinder with dynamic response in steep and breaking waves using smoothed particle hydrodynamics. Journal of Fluids and Structures, 125, 104049. doi:10.1016/j.jfluidstructs.2023.104049.
Cen C, Fourtakas G, Lind S, Rogers BD. 2024. A single-phase GPU-accelerated surface tension model using SPH. Computer Physics Communications, 295, 109012. doi:10.1016/j.cpc.2023.109012.
Ricci F, Vacondio R, Tafuni A. 2024. Multiscale Smoothed Particle Hydrodynamics based on a domain-decomposition strategy. Computer Methods in Applied Mechanics and Engineering, 418(A), 116500. doi:10.1016/j.cma.2023.116500.
2023
Laha S, Fourtakas G, Kuamr Das P, Keshmiri A. 2023. Fluid–structure interaction modeling of bi-leaflet mechanical heart valves using smoothed particle hydrodynamics. Physics of Fluids, 35, 121902. doi:10.1063/5.0172043.
Yang Y, Stansby PK, Rogers BD, Buldakov E, Stagonas D, Draycott S. 2023. The loading on a vertical cylinder in steep and breaking waves on sheared currents using smoothed particle hydrodynamics, Physics of Fluids, 35(8), 087132. doi.10.1063/5.0160021.
Antona R, Vacondio R, Avesani D, Righetti M, Renzi M. 2023. A WENO SPH scheme with improved transport velocity and consistent divergence operator. Computational Particle Mechanics. doi.10.1007/s40571-023-00681-z.
Tagliafierro B, Karimirad M, Altomare C, Göteman M, Martínez-Estévez I, Capasso S, Domínguez JM, Viccione G, Gómez-Gesteira M, Crespo AJC. 2023. Numerical validations and investigation of a semi-submersible floating offshore wind turbine platform interacting with ocean waves using an SPH framework. Applied Ocean Research, 141, 103757. doi:10.1016/j.apor.2023.103757.
King J, Lind S, Rogers BD, Stansby PK, Vacondio R. (2023). Large eddy simulations of bubbly flows and breaking waves with smoothed particle hydrodynamics. Journal of Fluid Mechanics, 972, A24. doi:10.1017/jfm.2023.649.
Sun JZ, Zou L, Govender N, Martínez-Estévez I, Crespo AJC, Sun Z, Domínguez JM. 2023. A resolved SPH-DEM coupling method for analysing the interaction of polyhedral granular materials with fluid. Ocean Engineering, 287 (2), 115938. doi:10.1016/j.oceaneng.2023.115938.
Altomare C, Scandura P, Cáceres I, van der A D, Viccione G. 2023. Large-scale wave breaking over a barred beach: SPH numerical simulation and comparison with experiments. Coastal Engineering, 185, 104362. doi:10.1016/j.coastaleng.2023.104362.
El Rahi J, Martínez-Estévez I, Tagliafierro B, Domínguez JM, Crespo AJC, Stratigaki V, Suzuki T, Troch P. 2023. Numerical investigation of wave-induced flexible vegetation dynamics in 3D using a coupling between DualSPHysics and the FEA module of Project Chrono. Ocean Engineering, 285, 115227. doi:10.1016/j.oceaneng.2023.115227.
Ricci F, Vacondio R, Tafuni, A. 2023. Direct numerical simulation of three-dimensional isotropic turbulence with smoothed particle hydrodynamics. Physics of Fluids, 35, 065148. doi:10.1063/5.0152154.
Yang Y, Draycott S, Stansby PK, Rogers BD. 2023. A numerical flume for waves on variable sheared currents using smoothed particle hydrodynamics (SPH) with open boundaries. Applied Ocean Research, 135, 103527. doi:10.1016/j.apor.2023.103527.
Mitsui J, Altomare C, Crespo AJC, Domínguez JM, Martínez-Estévez I, Suzuki T, Kubota S, Gómez-Gesteira M. 2023. DualSPHysics modelling to analyse the response of Tetrapods against solitary wave. Coastal Engineering, 183, 104315. doi:10.1016/j.coastaleng.2023.104315.
Capasso S, Tagliafierro B, Mancini S, Martínez-Estévez I, Altomare C, Domínguez JM, Viccione G. 2023. Regular Wave Seakeeping Analysis of a Planing Hull by Smoothed Particle Hydrodynamics: A Comprehensive Validation. Journal of Marine Science and Engineering, 11(4), 700. doi:10.3390/jmse11040700.
Martínez-Estévez I, Tagliafierro B, El Rahi J, Domínguez JM, Crespo AJC, Troch P, Gómez-Gesteira M. 2023. Coupling an SPH-based solver with an FEA structural solver to simulate free surface flows interacting with flexible structures. Computer Methods in Applied Mechanics and Engineering, 410, 115989. doi:10.1016/j.cma.2023.115989.
Pringgana G, Rogers BD, Cunningham L. 2023. Mitigating tsunami effects on buildings via novel use of discrete onshore protection systems. Coastal Engineering Journal, 65:1. doi:10.1080/21664250.2023.2170690.
Kotsarinis K, Green MD, Simonini A, Debarre O, Magin T, Tafuni A. 2023. Modeling sloshing damping for spacecraft: A smoothed particle hydrodynamics application. Aerospace Science and Technology, 108090. doi: 10.1016/j.ast.2022.108090.
Majtan E, Cunningham LS, Rogers BD. 2023. Numerical study on the structural response of a masonry arch bridge subject to flood flow and debris impact. Structures, 48, 782-797. doi:10.1016/j.istruc.2022.12.100.
Aslami MH, Rogers BD, Stansby PK, Bottacin-Busolin A. 2023. Simulation of floating debris in SPH shallow water flow model with tsunami application. Advances in Water Resources, 171, 104363. doi:10.1016/j.advwatres.2022.104363.
Ruffini G, Domínguez JM, Briganti R, Altomare C. Stolle J, Crespo AJC, Ghiassi B, Capasso S, De Girolano P. 2023. MESH-IN: A MESHed INlet offline coupling method for 3-D extreme hydrodynamic events in DualSPHysics. Ocean Engineering, 268, 113400. doi:org/10.1016/j.oceaneng.2022.113400.
Martínez-Estévez I, Domínguez JM, Tagliafierro B, Canelas RB, García-Feal O, Crespo AJC, Gómez-Gesteira M. 2023. Coupling of an SPH-based solver with a multiphysics library. Computer Physics Communications, 283, 108581. doi:10.1016/j.cpc.2022.108581.
Novak G, Pengal P, Silva AT, Domínguez JM, Tafuni A, Cetina M, Zagar D. 2023. Ecological Modelling. Interdisciplinary design of a fish ramp using migration routes analysis, 475, 110189. doi:10.1016/j.ecolmodel.2022.110189.
2022
Fen R, Fourtakas G, Rogers BD, Lombardi D. 2022. Two-phase fully-coupled smoothed particle hydrodynamics (SPH) model for unsaturated soils and its application to rainfall-induced slope collapse. Computers and Geotechnics, 151, 104964. doi:10.1016/j.compgeo.2022.104964.
Brito M, Bernardo F, Neves MG, Neves DRCB, Crespo AJC, Domínguez JM. 2022. Numerical Model of Constrained Wave Energy Hyperbaric Converter under Full-Scale Sea Wave Conditions. Journal of Marine Science and Engineering, 10(10), 1489. doi:10.3390/jmse10101489.
Tagliafierro B, Karimirad M, Martínez-Estévez I, Domínguez JM, Viccione G, Crespo AJC. 2022. Numerical Assessment of a Tension-Leg Platform Wind Turbine in Intermediate Water Using the Smoothed Particle Hydrodynamics Method. Energies, 15(11), 3993. doi:10.3390/en15113993.
Chow AD, Stansby PK, Rogers BD, Lind SJ, Fang Q. 2022. Focused wave interaction with a partially-immersed rectangular box using 2-D incompressible SPH on a GPU comparing with experiment and linear theory, European Journal of Mechanics / B Fluids, 95, 252-275. doi:10.1016/j.euromechflu.2022.05.007.
Wang S, González-Cao J, Islam H, Gómez-Gesteira M, Guedes Soares C. 2022. Uncertainty estimation of mesh-free and mesh-based simulations of the dynamics of floaters. Ocean Engineering, 256, 111386. doi:10.1016/j.oceaneng.2022.111386.
Suzuki T, García-Feal O, Domínguez JM, Altomare C. 2022. Simulation of 3D overtopping flow–object–structure interaction with a calibration-based wave generation method with DualSPHysics and SWASH. Computational Particle Mechanics, 9(5), 1003-1015. doi:10.1007/s40571-022-00468-8.
Tagliafierro B, Martínez-Estévez I, Domínguez JM, Crespo AJC, Göteman M, Engström J, Gómez-Gesteira M. 2022. A numerical study of a taut-moored point-absorber wave energy converter with a linear power take-off system under extreme wave conditions. Applied Energy, 311, 118629. doi:10.1016/j.apenergy.2022.118629.
Capasso S, Tagliafierro B, Martínez-Estévez I, Domínguez JM, Crespo AJC, Viccione G. 2022. A DEM approach for simulating flexible beam elements with the Project Chrono core module in DualSPHysics. Computational Particle Mechanics, 9(5), 969-985. doi:10.1007/s40571-021-00451-9.
Lowe RJ, Altomare C, Buckley M, da Silva R, Hansen JE, Rijnsdorp D, Domínguez JM, Crespo AJC. 2022. Smoothed Particle Hydrodynamics simulations of reef surf zone processes driven by plunging irregular waves. Ocean Modelling, 171, 101945. doi:10.1016/j.ocemod.2022.101945.
Draycott S, Li Y, Stansby PK, Adcock TAA, va den Bremer TS. 2022. Harmonic-induced wave breaking due to abrupt depth transitions: An experimental and numerical study. Coastal Engineering, 171, 104041. doi:10.1016/j.coastaleng.2021.104041.
2021
Tafuni A, De Giorgi MG, De Rosis A. 2022. Smoothed Particle Hydrodynamics vs Lattice Boltzmann for the solution of steady and unsteady fluid flows. Computational Particle Mechanics, 9(5), 1049-1072. doi:10.1007/s40571-021-00447-5.
Altomare C, Gironella X, Crespo AJC. 2021. Simulation of random wave overtopping by a WCSPH model. Applied Ocean Research, 116, 102888. doi:10.1016/j.apor.2021.102888.
Antona R, Vacondio R, Avesani D, Righetti M, Renzi M. 2021. Towards a High Order Convergent ALE-SPH Scheme with Efficient WENO Spatial Reconstruction. Water, 13(17), 2432. doi:10.3390/w13172432.
Quartier N, Crespo AJC, Domínguez JM, Stratigaki V, Troch P. 2021. Efficient response of an onshore Oscillating Water Column Wave Energy Converter using a one-phase SPH model coupled with a multiphysics library. Applied Ocean Research, 115, 102856. doi:10.1016/j.apor.2021.102856.
Majtan E, Cunningham L, Rogers BD. 2021. Flood-Induced Hydrodynamic and Debris Impact Forces on Single-Span Masonry Arch Bridge. Journal of Hydraulic Engineering, 147 (11). doi: 10.1061/(ASCE)HY.1943-7900.0001932.
Feng R, Fourtakas G, Rogers BD, Lombardi D. 2021. Large deformation analysis of granular materials with stabilized and noise-free stress treatment in smoothed particle hydrodynamics. Computers and Geotechnics, 138, 104356. doi:10.1016/j.compgeo.2021.104356.
Novak G, Domínguez JM, Tafuni A, Silva AT, Pengal P, Cetina M, Zagar D. 2021. 3-D Numerical Study of a Bottom Ramp Fish Passage Using Smoothed Particle Hydrodynamics. Water. 13(11), 1595. doi:10.3390/w13111595.
O’Connor J, Rogers BD. 2021. A fluid-structure interaction model for free-surface flows and flexible structures using smoothed particle hydrodynamics on a GPU, Journal of Fluids and Structures, 104. doi:10.1016/j.jfluidstructs.2021.103312.
Green MD, Zhou Y, Domínguez JM , Gómez-Gesteira M, Peiró J. 2021. Smooth particle hydrodynamics simulations of long-duration violent three-dimensional sloshing in tanks. Ocean Engineering, 229, 108925. doi:10.1016/j.oceaneng.2021.108925.
English A, Domínguez JM, Vacondio R, Crespo AJC, Stansby PK, Lind SJ, Chiapponi L, Gómez-Gesteira M. 2022. Modified dynamic boundary conditions (mDBC) for general purpose smoothed particle hydrodynamics (SPH): application to tank sloshing, dam break and fish pass problems. Computational Particle Mechanics, 9(5), 911-925. doi:10.1007/s40571-021-00403-3.
Tagliafierro B, Mancini S, Ropero-Giralda P, Domínguez JM, Crespo AJC, Viccione G. 2021. Performance Assessment of a Planing Hull Using the Smoothed Particle Hydrodynamics Method. Journal of Marine Science and Engineering, 9, 244. doi:10.3390/jmse9030244.
Pringgana G, Cunningham LS, Rogers BD. 2021. Influence of Orientation and Arrangement of Structures on Tsunami Impact Forces: Numerical Investigation with Smoothed Particle Hydrodynamics. J. Waterway, Port, Coastal, Ocean Engineering, 147(3). doi:10.1061/(ASCE)WW.1943-5460.0000629.
Quartier N, Ropero-Giralda P, Domínguez JM, Stratigaki V, Troch P. 2021. Influence of the drag force on the average absorbed power of heaving Wave Energy Converters using Smoothed Particle Hydrodynamics. Water. 13(3), 384. doi:10.33390/w13030384.
Ropero-Giralda P, Crespo AJC, Coe RG, Tagliafierro B, Domínguez JM, Bacelli G, Gómez-Gesteira M. 2021. Modelling a heaving point-absorber with a closed-loop control system using the DualSPHysics code. Energies 14(3), 760. doi:10.3390/en14030760.
García-Feal O, Crespo AJC, Gómez-Gesteira M. 2022. VisualSPHysics: advanced fluid visualization for SPH models. Computational Particle Mechanics, 9(5), 897-910. doi:10.1007/s40571-020-00386-7.
2020
De Rosis A, Tafuni A. 2020. A phase‐field lattice Boltzmann method for the solution of water‐entry and water‐exit problems. Computer-Aided Civil and Infraestructure Engineering. doi:10.1111/mice.12851.
Altomare C, Tafuni A, Domínguez JM, Crespo AJC, Gironella X, Sospedra J. 2020. SPH Simulations of Real Sea Waves Impacting a Large-Scale Structure. Journal of Marine Science and Engineering, 8, 826. doi:10.3390/jmse8100826.
Ropero-Giralda P, Crespo AJC, Tagliafierro B, Altomare C, Domínguez JM, Gómez-Gesteira M, Viccione G. 2020. Efficiency and survivability analysis of a point-absorber wave energy converter using DualSPHysics. Renewable Energy, 162: 1763-1776. doi:10.1016/j.renene.2020.10.012.
Reece G, Rogers BD, Lind S, Fourtakas G. 2020. New instability and mixing simulations using SPH and a novel mixing measure. Journal of Hydrodynamics. doi:10.1007/s42241-020-0045-x.
Nóbrega JD, Matos J. Shulz HE, Canelas RB, 2020. Smooth and Stepped Spillway Modeling Using the SPH Method. Journal of Hydraulic Engineering, 146 (8). doi:10.1061/(ASCE)HY.1943-7900.0001776.
Brito M, Canelas RB, García-Feal O, Domínguez JM, Crespo AJC, Ferreira RML, Neves MG, Teixeira L. 2020. A numerical tool for modelling oscillating wave surge converter with nonlinear mechanical constraints. Renewable Energy, 146: 2024-2043. doi:10.1016/j.renene.2019.08.034.
2019
Lowe RJ, Buckley ML, Altomare C, Rijnsdorp DP, Yao Y, Suzuki T, Bricker J. 2019. Numerical simulations of surf zone wave dynamics using Smoothed Particle Hydrodynamics. Ocean Modelling, 101481. doi:10.1016/j.ocemod.2019.101481.
Novak G, Tafuni A, Domínguez JM, Četina M, Žagar D. 2019. A Numerical Study of Fluid Flow in a Vertical Slot Fishway with the Smoothed Particle Hydrodynamics Method. Water, 11(9), 1928. doi:10.3390/w11091928.
Domínguez JM, Crespo AJC, Hall M, Altomare C, Wu M, Stratigaki V, Troch P, Cappietti L, Gómez-Gesteira M. 2019. SPH simulation of floating structures with moorings. Coastal Engineering, 153, 103560. doi:10.1016/j.coastaleng.2019.103560.
Manenti S, Wang D, Domínguez JM, Li S, Amicarelli A, Albano R. 2019. SPH Modeling of Water-Related Natural Hazards. Water, 11(9), 1875. doi:10.3390/w11091875.
Leonardi M, Domínguez JM, Rung T. 2019. An approximately consistent SPH simulation approach with variable particle resolution for engineering applications. Engineering Analysis with Boundary Elements, 106: 555-570. doi:10.1016/j.enganabound.2019.06.001.
Subramaniam SP, Scheres B, Schilling M, Liebisch S, Kerpen N, Schlurmann T, Altomare C, Schüttrumpf H. 2019. Influence of Convex and Concave Curvatures in a Coastal Dike Line on Wave Run-up. Water, 11(7): 1333. doi:10.3390/w11071333.
Hosain ML, Domínguez JM, Fdhila R Bel, Kyprianidis K. 2019. Smoothed particle hydrodynamics modeling of industrial processes involving heat transfer. Applied Energy, 252: 113441. doi:10.1016/j.apenergy.2019.113441.
Verbrugghe T, Stratigaki V, Altomare C, Domínguez JM, Troch P, Kortenhaus A. 2019. Implementation of Open Boundaries within a Two-Way Coupled SPH Model to Simulate Nonlinear Wave–Structure Interactions. Energies, 12(4), 697. doi:10.3390/en12040697.
Verbrugghe T, Domínguez JM, Altomare C, Tafuni A, Vacondio R, Troch P, Kortenhaus A. 2019. Non-linear wave generation and absorption using open boundaries within DualSPHysics. Computer Physics Communications, 240: 46-59. doi:10.1016/j.cpc.2019.02.003.
Domínguez JM, Altomare C, Gonzalez-Cao J, Lomonaco P. 2019. Towards a more complete tool for coastal engineering: solitary wave generation, propagation and breaking in an SPH-based model. Coastal Engineering Journal, 61: 15-40. doi:10.1080/21664250.2018.1560682.
Chow AD, Rogers BD, Lind SJ, Stansby PK. 2019. Numerical wave basin using incompressible smoothed particle hydrodynamics (ISPH) on a single GPU with vertical cylinder test cases. Computers & Fluids, 179: 543-562. doi:10.1016/j.compfluid.2018.11.022.
González-Cao J, Altomare C, Crespo AJC, Domínguez JM, Gómez-Gesteira M, Kisacik D. 2019. On the accuracy of DualSPHysics to assess violent collisions with coastal structures. Computers & Fluids, 179: 604-612. doi:10.1016/j.compfluid.2018.11.021.
Green MD, Vacondio R, Peiró J. 2018. A smoothed particle hydrodynamics numerical scheme with a consistent diffusion term for the continuity equation. Computers & Fluids, 179: 632-344. doi:10.1016/j.compfluid.2018.11.020.
2018
Altomare C, Tagliafierro B, Domínguez JM, Suzuki T, Viccione G. 2018. Improved relaxation zone method in SPH-based model for coastal engineering applications. Applied Ocean Research, 81: 15-33. doi:10.1016/j.apor.2018.09.013.
Tafuni A, Domínguez JM, Vacondio R, Crespo AJC. 2018. A versatile algorithm for the treatment of open boundary conditions in Smoothed particle hydrodynamics GPU models, Computer Methods in Applied Mechanics and Engineering, 342(1): 604-624. doi:10.1016/j.cma.2018.08.004.
Zubeldia EH, Fourtakas G, Rogers BD, Farias MM. 2018. Multi-phase SPH model for simulation of erosion and scouring by means of the Shields and Drucker-Prager criteria. Advances in Water Resources, 117: 98-114. doi:10.1016/j.advwatres.2018.04.011.
Verbrugghe T, Domínguez JM, Crespo AJC, Altomare C, Stratigaki V, Troch P, Kortenhaus A. 2018. Coupling methodology for smoothed particle hydrodynamics modelling of non-linear wave-structure interactions. Coastal Engineering, 138: 184-198. doi:10.1016/j.coastaleng.2018.04.021.
Canelas RBC, Crespo AJC, Brito M, Domínguez JM, García-Feal O. 2018. Extending DualSPHysics with a Differential Variational Inequality: modeling fluid-mechanism interaction. Applied Ocean Research, 76: 88-97. doi:10.1016/j.apor.2018.04.015.
Chow AD, Rogers BD, Lind SJ, Stansby PK. 2018. Incompressible SPH (ISPH) with fast Poisson solver on a GPU. Computer Physics Communications, 226: 81-103. doi:10.1016/j.cpc.2018.01.005.
Rota-Roselli RA, Vernengo G, Altomare C, Brizzolara S, Bonfiglio L, Guercio R. 2018. Ensuring numerical stability of wave propagation by tuning model parameters using genetic algorithms and response surface methods. Environmental Modelling & Software, 103: 62–73. doi:10.1016/j.envsoft.2018.02.003.
Zhang F, Crespo AJC, Altomare C, Domínguez JM, Marzeddu A, Shang S, Gómez-Gesteira M. 2018. DualSPHysics: a numerical tool to simulate real breakwaters. Journal of Hydrodynamics, 30(1): 99-105. doi:10.1007/s42241-018-0010-0.
González-Cao J, García-Feal O, Domínguez JM, Crespo AJC, Gómez-Gesteira M. 2018. Analysis of the hydrological safety of dams using numerical tools: Iber and DualSPHysics. Journal of Hydrodynamics, 30(1): 87-94. doi:10.1007/s42241-018-0009-6.
2017
Altomare C, Domínguez JM, Crespo AJC, González-Cao J, Suzuki T, Gómez-Gesteira M, Troch P. 2017. Long-crested wave generation and absorption for SPH-based DualSPHysics model. Coastal Engineering, 127: 37-54 doi:10.1016/j.coastaleng.2017.06.004.
Canelas RB, Domínguez JM, Crespo AJC, Gómez-Gesteira M, Ferreira RML. 2017. Resolved Simulation of a Granular-Fluid Flow with a Coupled SPH-DCDEM Model. Journal of Hydraulic Engineering, 143 (9), art. no.06017012. doi:10.1061/(ASCE)HY.1943-7900.0001331.
Crespo AJC, Altomare C, Domínguez JM, González-Cao J, Gómez-Gesteira M. 2017. Towards simulating floating offshore Oscillating Water Column converters with Smoothed Particle Hydrodynamics. Coastal Engineering, 126: 11-16. doi:10.1016/j.coastaleng.2017.05.001.
Fourtakas G, Stansby PK, Rogers BD, Lind SJ. 2017. An Eulerian–Lagrangian incompressible SPH formulation (ELI-SPH) connected with a sharp interface. Computer Methods in Applied Mechanics and Engineering, 329(1): 532-552. doi:10.1016/j.cma.2017.09.029.
2016
Mokos A, Rogers BD, Stansby PK. 2016. A multi-phase particle shifting algorithm for SPH simulations of violent hydrodynamics with a large number of particles. Journal of Hydraulic Research. Published online. doi:10.1080/00221686.2016.1212944.
Barreiro A, Crespo AJC, Domínguez JM, García-Feal O, Zabala I, Gómez-Gesteira M. 2016. Quasi-Static Mooring solver implemented in SPH. Journal of Ocean Engineering and Marine Energy, 2(3): 381-396. doi:10.1007/s40722-016-0061-7.
Fourtakas G, Rogers BD. 2016. Modelling multi-phase liquid-sediment scour and resuspension induced by rapid flows using Smoothed Particle Hydrodynamics (SPH) accelerated with a graphics processing unit (GPU). Advances in Water Resources, 92: 186-99. doi:10.1016/j.advwatres.2016.04.009.
Vacondio R, Rogers BD, Stansby K, Mignosa P. 2016. Variable resolution for SPH in three dimensions: Towards optimal splitting and coalescing for dynamic adaptivity. Computer Methods in Applied Mechanics and Engineering, 300: 442-460. doi:10.1016/j.cma.2015.11.021.
Mayoral-Villa E, Alvarado-Rodríguez CE, Klapp J, Gómez-Gesteira M, Sigalotti LDG. 2016. Smoothed particle hydrodynamics: Applications to migration of radionuclides in confined aqueous systems. Journal of Contaminant Hydrology, 187: 65–78. doi:10.1016/j.jconhyd.2016.01.008.
Canelas RB, Crespo AJC, Domínguez JM, Ferreira RML and Gómez-Gesteira. 2016. SPH-DCDEM model for arbitrary geometries in free surface solid-fluid flows. Computer Physics Communications, 202: 131-140. doi:10.1016/j.cpc.2016.01.006.
Heller V, Bruggemann M, Spinneken J, Rogers BD. 2016. Composite modelling of subaerial landslide–tsunamis in different water body geometries and novel insight into slide and wave kinematics. Coastal Engineering, 109: 20–41. doi:10.1016/j.coastaleng.2015.12.004.
Pringgana G, Cunningham LS, Rogers BD. 2016. Modelling of tsunami-induced bore and structure interaction. Proceedings of the Institution of Civil Engineers: Engineering and Computational Mechanics, 169(3): 109-125. doi:10.1680/jencm.15.00020.
2015
Crespo AJC, Domínguez JM, Rogers BD, Gómez-Gesteira M, Longshaw S, Canelas R, Vacondio R, Barreiro A, García-Feal O. 2015. DualSPHysics: open-source parallel CFD solver on Smoothed Particle Hydrodynamics (SPH). Computer Physics Communications, 187: 204-216. doi:10.1016/j.cpc.2014.10.004.
Altomare C, Domínguez JM, Crespo AJC, Suzuki T, Caceres I, Gómez-Gesteira M. 2015. Hybridisation of the wave propagation model SWASH and the meshfree particle method SPH for real coastal applications. Coastal Engineering Journal, 57(4): 1550024. doi:10.1142/S0578563415500242.
Mokos A, Rogers BD, Stansby PK, Domínguez JM. 2015. Multi-phase SPH modelling of violent hydrodynamics on GPUs. Computer Physics Communications, 196: 304-316. doi:10.1016/j.cpc.2015.06.020.
Canelas RB, Domínguez JM, Crespo AJC, Gómez-Gesteira M, Ferreira RML. 2015. A Smooth Particle Hydrodynamics discretization for the modelling of free surface flows and rigid body dynamics. International Journal for Numerical Methods in Fluids, 78: 581-593. doi:10.1002/fld.4031.
Fourtakas G, Vacondio R, Rogers BD. 2015. On the approximate zeroth and first-order consistency in the presence of 2-D irregular boundaries in SPH obtained by the virtual boundary particle methods. International Journal for Numerical Methods in Fluids, 78: 475-501. doi:10.1002/fld.4026.
Longshaw SM, Rogers BD. 2015. Automotive Fuel Cell Sloshing Under Temporally and Spatially Varying High Acceleration Using GPU Based Smoothed Particle Hydrodynamics (SPH). Advances in Engineering Software, 83: 31–44. doi:10.1016/j.advengsoft.2015.01.008.
Altomare C, Crespo AJC, Domínguez JM, Gómez-Gesteira M, Suzuki T, Verwaest T. 2015. Applicability of Smoothed Particle Hydrodynamics for estimation of sea wave impact on coastal structures. Coastal Engineering, 96: 1-12. doi:10.1016/j.coastaleng.2014.11.001.
Aureli F, Dazzi S, Maranzoni A, Mignosa P, Vacondio R. 2015. Experimental and numerical evaluation of the force due to the impact of a dam-break wave on a structure. Advances in Water Resources, 76: 29-42. doi:10.1016/j.advwatres.2014.11.009.
2014
Cunningham LS, Rogers BD, Pringgana G. 2014. Tsunami wave and structure interaction: An investigation with smoothed-particle hydrodynamics. Proceedings of the Institution of Civil Engineers: Engineering and Computational Mechanics, 167(3): 106-116. doi:10.1680/eacm.13.00028 (winner of the 2014 EACM Best Paper Award).
Barreiro A, Domínguez JM, Crespo AJC, González-Jorge H, Roca D, Gómez-Gesteira M. 2014. Integration of UAV photogrammetry and SPH modelling of fluids to study runoff on real terrains. PLoS ONE, 9(11): e111031. doi:10.1371/journal.pone.0111031.
Altomare C, Crespo AJC, Rogers BD, Domínguez JM, Gironella X, Gómez-Gesteira M. 2014. Numerical modelling of armour block sea breakwater with Smoothed Particle Hydrodynamics. Computers and Structures, 130: 34-45. doi:10.1016/j.compstruc.2013.10.011.
2013
Vacondio R, Mignosa P, Pagani S. 2013. 3D SPH numerical simulation of the wave generated by the Vajont rockslide. Advances in Water Resources, 59: 146-156. doi:10.1016/j.advwatres.2013.06.009.
Fourtakas G, Rogers BD, Laurence DRP. 2013. Modelling Sediment resuspension in Industrial tanks using SPH. La Houille Blanche, 2: 39-45. doi:10.1051/lhb/2013014.
Domínguez JM, Crespo AJC, Valdez-Balderas D, Rogers BD. and Gómez-Gesteira M. 2013. New multi-GPU implementation for Smoothed Particle Hydrodynamics on heterogeneous clusters. Computer Physics Communications, 184: 1848-1860. doi:10.1016/j.cpc.2013.03.008.
Barreiro A, Crespo AJC, Domínguez JM and Gómez-Gesteira M. 2013. Smoothed Particle Hydrodynamics for coastal engineering problems. Computers and Structures, 120(15): 96-106. doi:10.1016/j.compstruc.2013.02.010.
Domínguez JM, Crespo AJC and Gómez-Gesteira M. 2013. Optimization strategies for CPU and GPU implementations of a smoothed particle hydrodynamics method. Computer Physics Communications, 184(3): 617-627. doi:10.1016/j.cpc.2012.10.015.
Valdez-Balderas D, Domínguez JM, Rogers BD, Crespo AJC. 2013. Towards accelerating smoothed particle hydrodynamics simulations for free-surface flows on multi-GPU clusters. Journal of Parallel and Distributed Computing, 73(11): 1483-1493. doi:10.1016/j.jpdc.2012.07.010.
Skillen A, Lind SJ, Stansby PK, Rogers BD. 2013. Incompressible Smoothed Particle Hydrodynamics (SPH) with reduced temporal noise and generalised Fickian smoothing applied to body-water slam and efficient wave-body interaction. Computer Methods in Applied Mechanics and Engineering, 265: 163-173. doi:10.1016/j.cma.2013.05.017.
Omidvar P, Stansby PK, Rogers BD. 2013. SPH for 3D floating bodies using variable mass particle distribution. International Journal for Numerical Methods in Fluids, 72(4): 427-452. doi:10.1002/fld.3749.
2012
Gómez-Gesteira M, Crespo AJC, Rogers BD, Dalrymple RA, Domínguez JM and Barreiro A. 2012. SPHysics – development of a free-surface fluid solver- Part 2: Efficiency and test cases. Computers & Geosciences, 48: 300-307. doi:10.1016/j.cageo.2012.02.028.
Gómez-Gesteira M, Rogers BD, Crespo AJC, Dalrymple RA, Narayanaswamy M and Domínguez JM. 2012. SPHysics – development of a free-surface fluid solver- Part 1: Theory and Formulations. Computers & Geosciences, 48: 289-299. doi:10.1016/j.cageo.2012.02.029.
Omidvar P, Stansby PK, Rogers BD 2012. Wave body interaction in 2D using Smoothed Particle Hydrodynamics (SPH) with variable particle mass. International Journal for Numerical Methods in Fluids, 68(6): 686-705. doi:10.1002/fld.2528.
2011
Crespo AJC, Dominguez JM, Barreiro A, Gómez-Gesteira M and Rogers BD. 2011. GPUs, a new tool of acceleration in CFD: Efficiency and reliability on Smoothed Particle Hydrodynamics methods. PLoS ONE, 6(6), e20685. doi:10.1371/journal.pone.0020685.
Domínguez JM, Crespo AJC, Gómez-Gesteira M, Marongiu JC. 2011. Neighbour lists in Smoothed Particle Hydrodynamics. International Journal For Numerical Methods in Fluids, 67(12): 2026-2042. doi:10.1002/fld.2481.
Vacondio R, Rogers BD, Stansby PK. 2011. Smoothed Particle Hydrodynamics: approximate zero-consistent 2-D boundary conditions and still shallow water tests. International Journal for Numerical Methods in Fluids, 69(1): 226-253. doi:10.1002/fld.2559.
2010
Gómez-Gesteira, M, Rogers BD, Dalrymple RA, Crespo AJC. 2010. State-of-the-art of classical SPH for free-surface flows. Journal of Hydraulic Research, 48: 6-27. doi:10.3826/jhr.2010.0012.
Rogers, BD, Dalrymple RA, Stansby PK. 2010. Simulation of caisson breakwater movement using 2-D SPH. Journal of Hydraulic Research, 48: 135-141, doi:10.1080/00221686.2010.9641254.
Narayanaswamy M, Crespo AJC, Gómez-Gesteira M, Dalrymple RA. 2010. SPHysics-FUNWAVE hybrid model for coastal wave propagation. Journal of Hydraulic Research, 48: 85-93. doi:10.3826/jhr.2010.0007.
2008
Crespo AJC, Gómez-Gesteira M, Dalrymple RA. 2008. Modeling Dam Break Behavior over a Wet Bed by a SPH Technique. Journal of Waterway, Port, Coastal, and Ocean Engineering, 134(6): 313-320.
2007
Crespo AJC, Gómez-Gesteira M, Dalrymple RA. 2007. 3D SPH Simulation of large waves mitigation with a dike. Journal of Hydraulic Research, 45(5): 631-642.
Crespo AJC, Gómez-Gesteira M, Dalrymple RA. 2007. Boundary Conditions Generated by Dynamic Particles in SPH Methods. CMC: Computers, Materials, & Continua, 5(3): 173-184.
2006
Dalrymple RA, Rogers BD. 2006. Numerical Modeling of Water Waves with the SPH Method. Coastal Engineering, 53(2-3): 141-147, doi:10.1016/j.coastaleng.2005.10.004.
2005
Gómez-Gesteira M, Cerqueiro D, Crespo C, Dalrymple RA. 2005. Green Water Overtopping Analyzed with an SPH Model. Ocean Engineering, 32(2): 223-238.
2004
Gómez-Gesteira M, Dalrymple RA. 2004. Using a 3D SPH Method for Wave Impact on a Tall Structure. J. Waterway, Port, Coastal, Ocean Engineering, 130(2): 63-69.