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Previous work: Multi-GPU for supercomputers using MPI (10 years ago…)

• DualSPHysics on GPU made it possible increase

the number of particles from 100k-200k to

around 5M.

• Simulation of real cases needed higher resolution

and/or larger size (more particles).

• However, the memory and performance of one

GPU was very limited.

• The solution to simulate real cases was to use

many GPUs.

• DualSPHysics Multi-GPU for supercomputers

• MPI to use large number of GPUs

• Physical domain decomposition

• Dynamic load balancing for homogeneous and

heterogeneous clusters.

Physical domain division with dynamic 

load balancing
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Previous work: Multi-GPU for supercomputers using MPI (10 years ago…)

• DualSPHysics on GPU made it possible increase

the number of particles from 100k-200k to

around 5M.

• Simulation of real cases needed higher resolution

and/or larger size (more particles).

• However, the memory and performance of one

GPU was very limited.

• The solution to simulate real cases was to use

many GPUs.

• DualSPHysics Multi-GPU for supercomputers

• MPI to use large number of GPUs

• Physical domain decomposition

• Dynamic load balancing for homogeneous and

heterogeneous clusters.

• Very good performance results. Efficiency close

to 100% using 128 GPUs!!

100% efficiency simulating 8M/GPU on 128 GPUs
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Largest full SPH free-surface fluid simulation in 2013. More than 1 billion particles!!

• Large wave interaction with oil rig using 

109 particles.

• More than 237,000 simulation steps to 

simulate 12 physical seconds.

• 79.1 hours using 64 GPUs Tesla M2090.

• Huge complexity for pre-processing, 

simulation and post-processing.

• Very interesting challenge but not very 

useful.

• Access to a supercomputer is required.

• Too much effort for practical use.

• Many particles do not allow modelling of 

complex problems involving different 

physical phenomena.

Previous work: Multi-GPU for supercomputers using MPI (10 years ago…)
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Largest full SPH free-surface fluid simulation in 2013. More than 1 billion particles!!

• Large wave interaction with oil rig using 

109 particles.

• More than 237,000 simulation steps to 

simulate 12 physical seconds.

• 79.1 hours using 64 GPUs Tesla M2090.

• Huge complexity for pre-processing, 

simulation and post-processing.

• Very interesting challenge but not very 

useful.

• Access to a supercomputer is required.

• Too much effort for practical use.

• Many particles do not allow modelling of 

complex problems involving different 

physical phenomena.

A large number of particles is not enough

to simulate complex real cases. 

• More physics was required.

• More features was required.

• More pre-processing options were required.

• More post-processing tools were required.

Previous work: Multi-GPU for supercomputers using MPI (10 years ago…)
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DualSPHysics evolution

we need more 

particles & 

acceleration!

Multicore and
GPU acceleration

Advanced pre- and
post-processing tools

Multi-GPU for 
Supercomputers 

(with MPI)

we need more

particles!

xNNx
more particles is 

NOT the solution!
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DualSPHysics is now ready for very complex multiphysics simulations!!
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Armour breakwater

Moored floating body Moored point absorber Oscillating wave surge converter

Floating oscillating wave

surge converter

Multi-body attenuator M4

Debris flow with DEM

Floating wind turbineWave star machine

Dam break with liquid & gasNon-Newtonian dam breakVertical slot fishway
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Implementation based on C++ threads and CUDA streams (not MPI)

The target is…

▪ Multi-GPU useful for researchers using DualSPHysics (not computer engineers)

▪ Full support of all current DualSPHysics functionalities

▪ Aimed at 100-200M particle simulations without extra user effort

▪ Multi-GPU to run on a workstation or computing node with 4-10 GPUs

▪ Accessible hardware for research groups with limited financial resources

New Multi-GPU approach for single-node

multi-GPU machine

Drawbacks:

▪ Limited number of GPUs (2-10 GPUs)

▪ Does not work in distributed systems 

▪ Limited size of the simulations?

Advantages:

▪ More portable and easy to use in Linux & Windows

▪ Simpler code using shared CPU memory for main 
program data

▪ More efficient communication. MPI overhead was 
removed.

▪ Not special pre-processing and post-processing 
tools required (more or less...)
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Implementation details

Multi-GPU implementation:

• The physical domain is divided into different parts, and each part is

computed on a GPU.

• A dynamic load balancing is applied to distribute the workload among the

GPUs during simulation

New

• A single execution process that uses multiple threads and multiple GPUs.

• Avoids MPI communication between different processes, and particle

data transfers are from GPU to GPU.

• A single copy of the execution data in the CPU that is shared between the

threads. No execution data transfers is required.

• A single process simplifies the implementation of complex

functionalities in DualSPHysics (wave generation, coupling with Chrono,

coupling with MoorDynPlus, etc.).

Single GPU execution:

Load 
initial data

Data transfer 
CPU-GPU

Neighbour list 
(NL)

Force 
calculation (FC)

System Update 
(SU)

Data transfer 
CPU-GPU

Save data 
(occasionally)

40k steps 

(1 physical

second)

2.19 ms per step  

(1 million particles):

NL: 21.9%

FC: 65.6%

SU: 12.5%

GPU
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Implementation details

• Standard C++ threads and CUDA streams. Not MPI or OpenMP.

• Synchronisation between CPU threads via std::mutex objects and std::atomic variables.

• Synchronisation between GPUs and overlapping between calculation and transfers via cudaStream

and cudaEvent objects (in multi-GPU almost all transfers are asynchronous).

Main thread

thread0 thread1

GPU0 GPU1

• A main CPU thread manages the simulation and other threads

• One CPU thread is created per GPU

• Several synchronisation levels:

• between all threads (n+1 threads)

• between threads with GPU (n threads)

• between two specific threads (2 threads)

• Explicit synchronisation between CPU threads and its GPU due:

• Several GPU tasks are running at the same time on each GPU

• All transfers are asynchronous

• All particle data are maintained in GPU memory. Data transfers 

are done directly between GPUs.
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Implementation details

• Two new main classes: JSphMgpuNode and JSphMgpuNodeUnit.

• Most non-SPH features (wave generation, damping, couplings…)

depend on JSph and are common to CPU, GPU and multi-GPU (that

is good!).

• JSphGpuSingle and JSphMgpuNodeUnit use the same CUDA code

for SPH (that is good!).

• NL code is different and more complicated for multi-GPU but does

not usually require changes for new formulations (that is ok!).

• JSphMgpuNodeUnit includes arrays of particle data (like JSphGpu)

and the SPH method code (like JSphGpuSingle).

• JSphMgpuNode (main thread) provides:

• Synchronised access to non-SPH features in JSph from other

threads.

• Combines partial results (reduction and gather operations).
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Multi-GPU overheads

• Multi-GPU requires significant data transfers for each step:

• Particle interaction requires data from neighbouring GPU particles (including cell information).

• The particles move and change from one GPU to another (all the data of these particles must be moved).

• Load balancing redistributes particles and their data among multiple GPUs (only when necessary).

• Multi-GPU requires new calculations not present in single GPU:

• Detection of particles changing GPUs.

• Add arriving particles and remove departing ones.

• Calculate cell information for neighbouring particles.

• Evaluate each GPU's performance to improve load balancing.

• Calculate new possible load balances to improve performance.

• Multi-GPU requires synchronisation between the GPUs:

• Dt calculation starting from all particles.

• Floating objects motion with particles on different GPUs.

• Calculation of fluid elevation and other magnitudes for wave generation.

• Coupling with other solvers (Chrono, MoorDynPlus, etc.).

• Many other functionalities managed by the main thread.
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Multi-GPU overheads

• Multi-GPU requires significant data transfers for each step:

• Particle interaction requires data from neighbouring GPU particles (including cell information).

• The particles move and change from one GPU to another (all the data of these particles must be moved).

• Load balancing redistributes particles and their data among multiple GPUs (only when necessary).

• Multi-GPU requires new calculations not present in single GPU:

• Detection of particles changing GPUs.

• Add arriving particles and remove departing ones.

• Calculate cell information for neighbouring particles.

• Evaluate each GPU's performance to improve load balancing.

• Calculate new possible load balances to improve performance.

• Multi-GPU requires synchronisation between the GPUs:

• Dt calculation starting from all particles.

• Floating objects motion with particles on different GPUs.

• Calculation of fluid elevation and other magnitudes for wave generation.

• Coupling with other solvers (Chrono, MoorDynPlus, etc.).

• Many other functionalities managed by the main thread.

So, implementing SPH for multi-GPU may not be complicated, but

achieving an efficient multi-GPU implementation of DualSPHysics

with all its functionalities is not easy.

✓ This implementation minimises the number and size of data 

transfers between GPUs.

✓ Data transfers overlap with calculations using asynchronous 

transfers (although it is never perfect).

✓ This implementation minimises the synchronisation points.
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Multi-GPU results

Hardware:

• CPU: 2x AMD EPYC 7282 at 2.8 GHz (16 cores)

• GPU: 8x NVIDIA L40S (48GB):

• Architecture: Ada Lovelace

• Memory: 48 GB GDDR6 with ECC

• Memory Bandwidth: 864 GB/s

• Interface: PCIe 4.0 x16 (no NVLink)

• CUDA cores: 18,176 (142 Multiprocessors)

• FP32 Performance: 91.6 TFLOPS

Similar testcase as used with multi-GPU MPI

Testcases:

• Dam break flow (different versions):

• Basic formulation

• Advanced formulation

• Advanced formulation + floating body

• Advanced formulation + 8 floating bodies

• Advanced formulation with Dynamic Load Balancing

• Particles: 4M to 256M

Performance results:

• Weak efficiency for 2, 4 and 8 GPUs

• Strong scalability for 4 and 8 GPUs
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Multi-GPU results

Testcase 1: Basic formulation
Algorithm: Verlet

Viscosity: Artificial

DDT: none

Boundaries: DBC

Floating bodies: none

Single-GPU runtimes (16M)

Runtime step: 2.19 ms / (steps*M)

Runtime NL/FC/SU: 21.9% / 65.6% / 12.5%

Runtime FC-Fluid: 61.4%

Runtime FC-Bound: 1.2%

Runtime mDBC: none

Runtime Floating: none

Weak efficiency

GPUs 4M/gpu 8M/gpu 16M/gpu 32M/gpu
1 100.0% 100.0% 100.0% 100.0%
2 96.0% 99.1% 100.6% 103.3%
4 88.9% 94.8% 97.9% 101.3%
8 75.8% 86.3% 92.7% 97.4%
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Multi-GPU results

Testcase 2: Advanced formulation
Algorithm: Symplectic

Viscosity: Laminar + SPS

DDT: Fourtakas Full

Boundaries: mDBC no-slip + no penetration

Floating bodies: none

Single-GPU runtimes (16M)

Runtime step: 6.47 ms / (steps*M)

Runtime NL/FC/SU: 21.1% / 68.5% / 10.4%

Runtime FC-Fluid: 59.7%

Runtime FC-Bound: 1.2%

Runtime mDBC: 4.3%

Runtime Floating: none

   

   

   

   

   

    

    

       

                          

GPUs 4M/gpu 8M/gpu 16M/gpu 32M/gpu
1 100.0% 100.0% 100.0% 100.0%
2 98.6% 100.8% 103.5% 104.6%
4 93.5% 98.3% 101.9% 102.9%
8 82.0% 92.6% 98.1% 100.1%

Weak efficiency
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Multi-GPU results

Testcase 3: Advanced + 1 floating body
Algorithm: Symplectic

Viscosity: Laminar + SPS

DDT: Fourtakas Full

Boundaries: mDBC no-slip + no penetration

Floating bodies: 1x large floating body

Single-GPU runtimes (16M)

Runtime step: 7.83 ms / (steps*M)

Runtime NL/FC/SU: 17.6% / 69.8% / 12.6%

Runtime FC-Fluid: 58.6%

Runtime FC-Bound: 1.0%

Runtime mDBC: 7.0%

Runtime Floating: 6.8%

   

   

   

   

   

    

    

       

                          

GPUs 4M/gpu 8M/gpu 16M/gpu 32M/gpu
1 100.0% 100.0% 100.0% 100.0%
2 97.8% 99.3% 102.4% 103.2%
4 91.9% 94.8% 98.3% 99.7%
8 80.4% 86.5% 91.2% 93.0%

Weak efficiency
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Multi-GPU results

Testcase 4: Advanced + 8 floating bodies
Algorithm: Symplectic

Viscosity: Laminar + SPS

DDT: Fourtakas Full

Boundaries: mDBC no-slip + no penetration

Floating bodies: 8x floating bodies

Single-GPU runtimes (16M)

Runtime step: 7.65 ms / (steps*M)

Runtime NL/FC/SU: 18.0% / 72.4% / 9.6%

Runtime FC-Fluid: 60.8%

Runtime FC-Bound: 1.1%

Runtime mDBC: 7.3%

Runtime Floating: 3.7%

Weak efficiency

GPUs 4M/gpu 8M/gpu 16M/gpu 32M/gpu
1 100.0% 100.0% 100.0% 100.0%
2 98.2% 99.7% 103.4% 104.3%
4 93.9% 97.2% 101.0% 102.4%
8 84.2% 85.4% 96.3% 97.9%
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Multi-GPU results

SPHERIC Benchmark Test Case #2
Algorithm: Symplectic

Viscosity: Laminar + SPS

DDT: Fourtakas Full

Boundaries: mDBC no-slip + no penetration

Runtimes (32M)

Single-GPU 13.3 h

4 GPUs 3.5 h (3.8x faster)

8 GPUs 2.5 h (5.3x faster)

Time: 0.5s Time: 1.0s Time: 2.0s
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Multi-GPU results

Largest full SPH free-surface fluid simulation in 2013. More than 1 billion particles!!

• Large wave interaction with oil rig using 

109 particles.

• More than 237,000 simulation steps to 

simulate 12 physical seconds.

• 79.1 hours using 64 GPUs Tesla M2090.

• Huge complexity for pre-processing, 

simulation and post-processing.

• Very interesting challenge but not very 

useful.

• Access to a supercomputer is required.

• Too much effort for practical use.

• Many particles do not allow modelling of 

complex problems involving different 

physical phenomena.

This simulation with 109 particles is possible with…

▪ 8x L40S (45 GB) in less than 27.4 hours (2.9 times faster)
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Multi-GPU results
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Multi-GPU in package v6.0 beta

Examples using multi-GPU:

▪ main/01_DamBreak

▪ main/18_Bathymetry

▪ mdbc/04_DamBreak

▪ mdbc/07_WavesCylinder

main/01_DamBreak/wCaseDambreak_win64_4GPU.bat
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Conclusions

• The multi-GPU version is not finished yet (periodic boundaries and inlet/outlet are missing), but...

• Right now, we can already simulate real complex cases with more than 1 billion particles.

• Improvements in pre-processing and post-processing allow us to address large multi-GPU

simulations without extra difficulty for the user.

• Good efficiency simulating simple and complex cases.

• Efficiency close to 100% simulating 8-16M/GPU on 8 GPUs.

For developers…

• Multi-GPU code is more complicated than single-GPU code.

• However, most of the CUDA code is the same for single- and multi-GPU code.

• Some important changes in the particle data arrays and elsewhere make it easier to implement

new SPH formulations and new features.
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