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Previous work: Multi-GPU for supercomputers using MPI (10 years ago...)

* DualSPHysics on GPU made it possible increase Physical domain division with dynamic
the number of particles from 100k-200k to load balancing
around SM.

« Simulation of real cases needed higher resolution
and/or larger size (more particles).

 However, the memory and performance of one
GPU was very limited.

e The solution to simulate real cases was to use
many GPUs.

* DualSPHysics Multi-GPU for supercomputers CPU

* MPI to use large number of GPUs Openttt ﬁ

* Physical domain decomposition T ‘

* Dynamic load balancing for homogeneous and o
heterogeneous clusters. CUDA ki

MPI
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Previous work: Multi-GPU for supercomputers using MPI (10 years ago...)

* DualSPHysics on GPU made it possible increase 100% efficiency simulating 8M/GPU on 128 GPUs
the number of particles from 100k-200k to
around 5M. Time: 0.3 ¢ Bioclone

« Simulation of real cases needed higher resolution @ §:?'$‘:N:m7:t::mpf

and/or larger size (more particles).

 However, the memory and performance of one

128 x 4
GPU was very limited. RN 4

e The solution to simulate real cases was to use

many GPUs. Speedup - Weak scaling
128
1M/Gpu
. . 4M/Gpu
* DualSPHysics Multi-GPU for supercomputers 96 | = 8M/Gpu
......... Ideal
* MPI to use large number of GPUs
64
* Physical domain decomposition
* Dynamic load balancing for homogeneous and 32
heterogeneous clusters.
0
* Very good performance results. Efficiency close 0 32 64 96 128
to 100% using 128 GPUs!! GPUs
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Previous work: Multi-GPU for supercomputers using MPI (10 years ago...)

Largest full SPH free-surface fluid simulation in 2013. More than 1 billion particles!!

Gl Sax MR (BHE) : * Large wave interaction with oil rig using

MPI: Dynamic balancing

Algorithm: Verlet & Wendland C s 1 09 pal‘ticles

Particles: 1,015 Millions IS '

Steps: 237,065 i . .

Rliﬁ)tsime: 79.1 hours w ® MOI’G than 237,000 Slmu1at10n StepS tO

Physical time: 12 seconds

simulate 12 physical seconds.
* 79.1 hours using 64 GPUs Tesla M2090.

* Huge complexity for pre-processing,
simulation and post-processing.

Time: 0,00 * Very interesting challenge but not very
useful.

e Access to a supercomputer is required.
e Too much effort for practical use.

* Many particles do not allow modelling of
complex problems involving different
physical phenomena.
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Previous work: Multi-GPU for supercomputers using MPI (10 years ago...)

Largest full SPH free-surface fluid simulation in 2013. More than 1 billion particles!!

Gl Sax MR (BHE) : * Large wave interaction with oil rig using

MPI: Dynamic balancing . cpuiEREEE o0 Y o 9
Algorithm: Verlet & Wendland r kiR 1 arti l
Particles: 1,015 Millions I 0 p cies.
Steps: 237,065

Runtime: 79.1 hours J: b MOI’G than 237,000 Slmu1at10n StepS tO
Physical time: 12 d = . .
R simulate 12 physical seconds.

a—T0 1 baxuxg 115ing 64 GPUs Tesla M2090.
A large n.umber of particles is not enough plexity for pre-processing,
to simulate complex real cases. and post-processing.

* More physics was required.
* More features was required. sting challenge but not very
* More pre-processing options were required.

More post-processing tools were required. : :
R supercomputer is required.

~oo-rrrererC 1 {O1T fOT practical use.

* Many particles do not allow modelling of
complex problems involving different
physical phenomena.
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DualSPHysics evolution

Nxcpu gpuxN . .
more particles is
Pl ad DualSPHysics NOT the solution!
f”’
< we need more N —
i : ] particles! o C( ST
3338827 =  CPU gy
= . we need more DualSPHysics 128x 45
SPHYSICS  particles & -
acceleration!

8th DualSPHysics Workshop

January 28, 2026 — Ourense, Spain



DualSPHysics evolution

Nxcpu UXN . .
P - more particles is
,fV DualSPHysics NOT the solution!
’ * Kernel functions:
4444 33T WC need more * Cubic Spline (Monaghan and Lattanzio, 1985)
part1C1eS! * Quintic Wendland (Wendland, 1995)

------* CPU qPU

* Density diffusion Term:
* Molteni (Molteni and Colagrossi, 2009)

we need more DuaISPHySiCS * Fourtakas (Fourtakas et al., 2019)
artiCICS & \ * Antuono (Antuono et al., 2012)
p 1 ) | * Green (Green et al., 2019)
ration!
acceleratio * Viscosity:
« Artificial (Monaghan, 1992)
we need \ * Laminar (Lo and Shao, 2002)
« Laminar + SPS turbulence model (Dalrymple and Rogers, 2006)
more physics!

§DHySics

* Weakly compressible approach using Tait’s equation of state (Batchelor, 1974)

* Time integration scheme:
= Verlet (Verlet, 1967)
* Symplectic (Leimkhuler, 1996)

DuaISPHyS|cs

* Variable time step (Monaghan and Kos, 1999)
« Shifting algorithm (Lind et al., 2012)
* Boundary conditions:
« Dynamic boundary conditions (Crespo et al., 2007)
* Modified Dynamic boundary conditions (English et al., 2021)
* Floating objects (Monaghan et al., 2003)

* Periodic open boundaries (Gomez-Gesteira et al., 2012)

* Inflow-outflow boundary conditions (Tafuni et al., 2018)
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DualSPHysics evolution

Nxcpu gpuxN . .
more particles is
_~-Y  DualSPHysics NOT the solution!
-
- -
~“we need more
4 ~ particles! :
:' z'gir' ------* CPU qu
' e Wveneedmore  pyualSPHysics
acceleration! LN N
\\ Time: 3.600 s
weneed SN
. N
more phySICS! ‘ mﬁrx}aﬂg}zm‘mm,mm Time: 16.94s

DualSPHysics

\\\\\HM{,

= PROJECT

Z,CHROND
i
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DualSPHysics evolution

Nxcpu gpuxN . .
more particles is
,a' DualSPHysics NOT the solution!
4444 - - WC need more Ocean engineering features:

* Piston- and flap-type long-crested second-order wave generation
(Altomare et al., 2017)
* Solitary waves (Dominguez et al., 2019)

- .- * CPU qPU
. * Focused waves (Whittaker et al., 2017)
we need more ,
. DuaISPHySICS \ * Passive and Active Wave Absorption System (Altomare et al., 2017)

partlcles &  Relaxation Zone method and coupling with wave propagation models
acceleration! \ (Altomare et al., 2018)
\\ * Non-linear wave generation and absorption using open boundaries
we need \ (Verbrugghe et al., 2019)
N
more phySICS' L) Flexible body approaches:
 Lagrangian formulation for flexible fluid-structure interaction

(O’Connor et al., 2021)
* Flexible beams based on co-rotating rigid elements using Project
Chrono (Capasso et al., 2022)
DuaISPHySICS * SPH coupling with FEA structural solver using Project Chrono
(Martinez-Estévez et al., 2023)
a Multi-layer piston wavemaker I
b Relaxation Zone

¢ Open boundaries '

particles!

§DHySics
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DualSPHysics evolution

Nxcpu

UxXN . .
- more particles is

v DualSPHysics

-7 we need more
particles!

- - * CPU qpu
we need more DualSPHysics N

particles & N
acceleration! AN
\
weneed S
N
more physics! %

SDHys|cs
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DuaISPHyS|cs

NOT the solution!

\/, — Velocity.X [m/s]
1.00 1.50 200 250 3.00

0.00 0.50
| D —

‘JPU

Geomechanics formulations: 3-D collapse of cohesive granular materials
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DualSPHysics evolution

Nxcpu

gpuxN

more particles is

,fV DualSPHysics

-7 We need more
particles!

- - CpU qPU

we need more DualSPHysics N

particles & DS
. N
acceleration! \\
N
N
weneed S
. N
more physics! %

§DHySics
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-

DualSPHysics

NOT the solution!

CREATES THE XML FOR YOU

3) analyse the results
3.1) by visualising the particles

@ python 3.2) by computing physical magnitudes of interest

DesignSPHysics is a complete software that allows the user to
: 1) create a new case,
! F:ﬁ F_ZCAD 2) execute the simulation and then

VisualSPHysics: Ad 1 visualisation tools: http:/visual.sphysics.org

A®blender + @ python
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DualSPHysics is now ready for very complex multiphysics simulations!!

Non-Newtonian dam break Dam break with liquid & gas

Debris flow with DEM

Moored point absorber

Velocky X [svs]
300 200 100 00 100 200 300
N . L L " ;

Wave star machine Floating oscillating wave Multi-body attenuator M4 Floating wind turbine
surge converter

8th DualSPHysics Workshop January 28, 2026 — Ourense, Spain



DualSPHysics evolution

Nxcpu gpuxN

more particles is
- DualSPHysics NOT the solution!

-7 we need more
particles!

- - * CPU qpu
weneedmore  pyalSPHysics ~

particles &
acceleration!
we need S N
more physics! %
now we want
DuaISPHyS|cs more particles DuaISPHysms

& acceleration!

ZEECLE

§DHySics
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New Multi-GPU approach for single-node

Implementation based on C++ threads and CUDA streams (not MPI)
The target is...

=  Multi-GPU useful for researchers using DualSPHysics (not computer engineers)

@Y @Y @Y @Y : . -
&)Q’)Cﬁgé = Full support of all current DualSPHysics functionalities

. . = Aimed at 100-200M particle simulations without extra user effort
multi-GPU machine

=  Multi-GPU to run on a workstation or computing node with 4-10 GPUs

= Accessible hardware for research groups with limited financial resources

Advantages: Drawbacks:
= More portable and easy to use in Linux & Windows = Limited number of GPUs (2-10 GPUs)
= Simpler code using shared CPU memory for main = Does not work in distributed systems

program data =  [imited size of the simulations?

=  More efficient communication. MPI overhead was
removed.

= Not special pre-processing and post-processing
tools required (more or less...)
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DualSPHysics evolution

Nxcpu gpuxN

more particles is
- DualSPHysics NOT the solution!

-4 we need more
particles! Current work

weneedmore  pyalSPHysics ~

particles &

acceleration! _
we need \ F

|

|
-/' DuaISPHyS|cs nlizxv;znvf;its :DuaISPHysms

|

|

==

— -

§DHySics

& acceleration!

ZEECLE
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Implementation details

Single GPU execution:

Load
initial data

v
Data transfer

GPU CPU-GPU

=== =§ ===

I Neighbour list
- (NL)
40k steps | 12
1 physical Force
( sre)cz)]nd) : calculation (FC)
|

2.19 ms per step
(1 million particles):
NL: 21.9%

FC: 65.6%

SU: 12.5%

System Update

r-
o
(%2}
C
[~—

|
|
|
|
<
|
|
|
L

Data transfer
CPU-GPU
v

Save data
(occasionally)

8th DualSPHysics Workshop

Multi-GPU implementation:

The physical domain is divided into different parts, and each part is
computed on a GPU.

GPU 3 GPU 4 |
A dynamic load balancing is applied to distribute the workload among the
GPUs during simulation

New
A single execution process that uses multiple threads and multiple GPUs.

Avoids MPI communication between different processes, and particle
data transfers are from GPU to GPU.

A single copy of the execution data in the CPU that is shared between the
threads. No execution data transfers is required.

A single process simplifies the implementation of complex
functionalities in DualSPHysics (wave generation, coupling with Chrono,
coupling with MoorDynPlus, etc.).

January 28, 2026 — Ourense, Spain



Implementation details

* Standard C++ threads and CUDA streams. Not MPI or OpenMP.
* Synchronisation between CPU threads via std::mutex objects and std.:atomic variables.

* Synchronisation between GPUs and overlapping between calculation and transfers via cudaStream
and cudaFEvent objects (in multi-GPU almost all transfers are asynchronous).

* A main CPU thread manages the simulation and other threads
| * One CPU thread is created per GPU

* Several synchronisation levels:
* between all threads (n+1 threads)
* between threads with GPU (n threads)
* between two specific threads (2 threads)

i * Explicit synchronisation between CPU threads and its GPU due:

: * Several GPU tasks are running at the same time on each GPU

i * All transfers are asynchronous

» All particle data are maintained in GPU memory. Data transfers
are done directly between GPUs.
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Implementation details

e Two new main classes: JSphMgpuNode and JSphMgpuNodeUnit.

JSph

* Most non-SPH features (wave generation, damping, couplings...)
depend on JSph and are common to CPU, GPU and multi-GPU (¢hat /l\
is good!). 1SphGpu
* JSphGpuSingle and JSphMgpuNodeUnit use the same CUDA code _/\ FsphMgputiods

for SPH (that is good!).

* NL code is different and more complicated for multi-GPU but does
not usually require changes for new formulations (that is ok!).

* JSphMgpuNodeUnit includes arrays of particle data (like JSphGpu)
and the SPH method code (like JSphGpuSingle).

e JSphMgpuNode (main thread) provides:

N x | JSphMgpuNodeUnit

hGpuMPl | | JSphGpuSingle

* Synchronised access to non-SPH features in JSph from other
threads.
* Combines partial results (reduction and gather operations).
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Multi-GPU overheads

*  Multi-GPU requires significant data transfers for each step:
 Particle interaction requires data from neighbouring GPU particles (including cell information).
* The particles move and change from one GPU to another (all the data of these particles must be moved).
* Load balancing redistributes particles and their data among multiple GPUs (only when necessary).

*  Multi-GPU requires new calculations not present in single GPU:
« Detection of particles changing GPUs.
* Add arriving particles and remove departing ones.
* Calculate cell information for neighbouring particles.
* Evaluate each GPU's performance to improve load balancing.
* Calculate new possible load balances to improve performance.

*  Multi-GPU requires synchronisation between the GPUs:
* Dt calculation starting from all particles.
* Floating objects motion with particles on different GPUs.
* Calculation of fluid elevation and other magnitudes for wave generation.
* Coupling with other solvers (Chrono, MoorDynPlus, etc.).
* Many other functionalities managed by the main thread.
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Multi-GPU overheads

*  Multi-GPU requires significant data transfers for each step:
 Particle interaction requires data from neighbouring GPU particles (including cell information).
* The particles move and change from one GPU to another (all the data of these particles must be moved).
* Load balanci cessary).

So, implementing SPH for multi-GPU may not be complicated, but
* Multi-GPU requil achieving an efficient multi-GPU implementation of DualSPHysics
e Detection of { With all its functionalities is not easy.
« Add arriving v" This implementation minimises the number and size of data

e (Calculate cel transfers between GPUs.

e Evaluate eac v Data transfers overlap with calculations using asynchronous
« Calculate nev transfers (although it is never perfect).

v" This implementation minimises the synchronisation points.
*  Multi-GPU requiL - : I i G

* Dt calculation starting from all particles.

* Floating objects motion with particles on different GPUs.

* Calculation of fluid elevation and other magnitudes for wave generation.
* Coupling with other solvers (Chrono, MoorDynPlus, etc.).

* Many other functionalities managed by the main thread.
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Multi-GPU results

Hardware: Testcases:
« CPU: 2x AMD EPYC 7282 at 2.8 GHz (16 cores) * Dam break flow (different versions):
* GPU: 8x NVIDIA 1.40S (48GB): * Basic formulation
* Architecture: Ada Lovelace * Advanced formulation
*  Memory: 48 GB GDDR6 with ECC * Advanced formulation + floating body
*  Memory Bandwidth: 864 GB/s * Advanced formulation + 8 floating bodies
« Interface: PCle 4.0 x16 (no NVLink) e Advanced formulation with Dynamic Load Balancing
« CUDA cores: 18,176 (142 Multiprocessors) * Particles: 4M to 256M

*  FP32 Performance: 91.6 TFLOPS

Performance results: /

*  Weak efficiency for 2, 4 and 8 GPUs
* Strong scalability for 4 and 8 GPUs

Time: 0.3 s

Similar testcase as used with multi-GPU MPI
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Multi-GPU results

1oy Weak efficiency
Testcase 1: Basic formulation oo — ,

. —— =0
Algorithm: Verlet oo N
Viscosity: Artificial

80%
DDT: none

70%
Boundaries: DBC

: : 60%
Floating bodies: none

Single-GPU runtimes (16M) o0 5 4 8

Runtime step: 2.19 ms / (steps*M)
Runtime NL/FC/SU: 21.9% / 65.6% / 12.5%

GPUs
=@ AM/GP U =@ 8M/gP U em@guem 16M/gp U ==gm= 32M/gpu

Runtime FC-Fluid: 61.4% GPUs| 4M/gpu | 8M/gpu | 16M/gpu | 32M/gpu
0, 0, 0, 0,

SR, == 1 100.0%| 100.0%| 100.0%| 100.0%
_ 2 96.0%|  99.1%| 100.6%| 103.3%
Runtime mDBC: none 4 88.9%| 94.8%| 97.9% 101.3%
Runtime Floating: none 8 75.8%| 86.3%| 92.7%| 97.4%

8th DualSPHysics Workshop
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Multi-GPU results

Testcase 2: Advanced formulation

Algorithm:
Viscosity:
DDT:
Boundaries:

Floating bodies:

Single-GPU runtimes (16M)

Runtime step:
Runtime NL/FC/SU:
Runtime FC-Fluid:
Runtime FC-Bound:
Runtime mDBC:

Runtime Floating:

110%

Weak efficiency

100%
Symplectic

90%
Laminar + SPS

80%
Fourtakas Full

_ _ 70%
mDBC no-slip + no penetration

60%
none

50%

6.47 ms / (steps*M)
21.1% / 68.5% / 10.4%

e —,

2

i

4

8 GPUs

=@ AM/GP U =@ 8M/gP U em@guem 16M/gp U ==gm= 32M/gpu

59.7% GPUs | 4M/gpu | 8M/gpu | 16M/gpu | 32M/gpu
L% 1 | 100.0%| 100.0%| 100.0%| 100.0%

2 98.6%| 100.8%| 103.5%| 104.6%
4.3% 4 93.5%|  98.3%| 101.9%| 102.9%
none 8 82.0%| 92.6%| 98.1%| 100.1%
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Multi-GPU results

Testcase 3: Advanced + 1 floating body

Algorithm:
Viscosity:
DDT:
Boundaries:

Floating bodies:

Single-GPU runtimes (16M)

Runtime step:
Runtime NL/FC/SU:
Runtime FC-Fluid:
Runtime FC-Bound:
Runtime mDBC:

Runtime Floating:

Weak efficiency

110%

100%
Symplectic

90%
Laminar + SPS

80%
Fourtakas Full

_ _ 70%
mDBC no-slip + no penetration

1x large floating body o0

50%

7.83 ms / (steps*M)
17.6% / 69.8% / 12.6%

::\j\§

2

4

8 GPUs

=@ AM/GP U =@ 8M/gP U em@guem 16M/gp U ==gm= 32M/gpu

58.6% GPUs | 4M/gpu | 8M/gpu | 16M/gpu | 32M/gpu
1.0% 1 100.0%| 100.0%| 100.0%| 100.0%

2 97.8%| 99.3%| 102.4%| 103.2%

7.0% 4 91.9%| 94.8%| 98.3%| 99.7%

6.8% 8 80.4%| 86.5%| 91.2%| 93.0%
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Multi-GPU results

Weak efficiency

110%

Testcase 4: Advanced + 8 floating bodies

100%

Algorithm: Symplectic .
Viscosity: Laminar + SPS

DDT: Fourtakas Full o
Boundaries: mDBC no-slip + no penetration o

Floating bodies: 8x floating bodies e0%

Single-GPU runtimes (16M)

Runtime step: 7.65 ms / (steps*M)
Runtime NL/FC/SU: 18.0% / 72.4% / 9.6%

50%

2

4

8 GPUs

=@ AM/GP U =@ 8M/gP U em@gue 16M/gp U ==gm= 32M/gpu

Runtime FC-Fluid: 60.8% GPUs| 4M/gpu | 8M/gpu | 16M/gpu | 32M/gpu
SR, = 1 100.0%| 100.0%| 100.0%| 100.0%

2 98.2%|  99.7%| 103.4%| 104.3%
Runtime mDBC: 7.3% 4 93.9%|  97.2%| 101.0%| 102.4%
Runtime Floating: 3.7% 8 84.2%| 85.4%| 96.3%| 97.9%

8th DualSPHysics Workshop

January 28, 2026 — Ourense, Spain




Multi-GPU DualSPHysics v6.0 He" 3-D dam break (SPHERIC Benchmark Test Case #2) on 4 GPUs Time: 0.76 s

Dp=0.0029 m (32M paticles)
mDBC no-slip (no penetration) & laminar+ SPS viscosity

42

S

N w
Velocity [m/s]

-00

GPU




Multi-GPU DualSPHysics v6.0 3-D dam break (SPHERIC Benchmark Test Case #2) on 8 GPUs Time: 1.53s
Dp=0.0029 m (32M paticles) 1
mDBC no-slip (no penetration) & laminar+SPS viscosity

T .

Velocity [m/s]

— 0.0

GPU




Multi-GPU results

100%
SPHERIC Benchmark Test Case #2 90% M

80%

Algorithm: Symplectic o
Viscosity: Laminar + SPS = 60%
DDT: Fourtakas Full g 50%
Boundaries: mDBC no-slip + no penetration . :gz//:
Single-GPU 13.3 h 10% —8xGPUs
4 GPUs 3.5 h (3.8x faster) o 0.0 05 1o r "0
8 GPUs 2.5 h (5.3x faster) Physical time [s]
. Time: 1.0s 0'-1h-2b?m? S Time: 2.0s
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Multi-GPU results

Largest full SPH free-surface fluid simulation in 2013. More than 1 billion particles!!

Gl Sax MR (BHE) * Large wave interaction with oil rig using

MPI: Dynamic balancing 0 cpummmmm 000l nvioia
Algorithm: Verlet & Wendland [ il 1 09 p articles

Particles: 1,015 Millions st '

Steps: 237,065 . .

Rlilftsime: 79.1 hours w ® MOI’G than 237,000 Slmu1at10n StepS tO

Physical time: 12 seconds

simulate 12 physical seconds.
* 79.1 hours using 64 GPUs Tesla M2090.

* Huge complexity for pre-processing,
simulation and post-processing.

CTL g L

This simulation with 10° particles is possible with... hallenge but not very
= 8x L40S (45 GB) in less than 27.4 hours (2.9 times faster)

computer is required.

e Too much effort for practical use.

)

e Many particles do not allow modelling of
complex problems involving different
physical phenomena.

Nacional de Sup
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Multi-GPU results

GRUs: 6x NVIDIA 1405 VolturnUS-S FOWT simulation - Fluid surface without damping area
Particle size: 0.25 m

?U
Particles: 1098.9 Millions %
Physical time: 54 seconds DualSPHysics
Runtime: 177.2 hours
GPU memory usage: 83.1%
Steps: 516,328
Output files: 541
Output size: 1,494 GB

cpu

Trancioto peor.
e e Coregms
PSS

Output selected particles: 8.2% T
eta [m]
80 60 40 20 00 20 40 60 80
e e

Zoom in on particles near the FOWT (grey box)

- Particle velocity [m/s]
00 10 20 30 40
[
| ime: 0.0 s




Multi-GPU in package v6.0 beta

Examples using multi-GPU:

= main/01 DamBreak -
* main/18 Bathymetry “W d "Qj

= mdbc/04 DamBreak i e

= mdbc/07 WavesCylinder

main/©1 DamBreak/wCaseDambreak win64_ 4GPU.bat

set dualsphvsicsgpu=" /DualSPHysics6.0 win64.exe"
set dualsphysicsmgpu=" /DualSPHysics6.0MGPU_win64.exe"

I -save:all -dp:©.0016
"@" goto fail

-gpus:4 / -svdomainvtk
if not " " "@" goto fail
:postprocessing
set dirout2 \particles

-dirdata -savevtk /PartFluid -onlytype:-all,+fluid -vars:press,gid
if not " " "@" goto fail
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Conclusions

* The multi-GPU version is not finished yet (periodic boundaries and inlet/outlet are missing), but...
* Right now, we can already simulate real complex cases with more than 1 billion particles.

* Improvements in pre-processing and post-processing allow us to address large multi-GPU
simulations without extra difficulty for the user.

* Good efficiency simulating simple and complex cases.
* Efficiency close to 100% simulating 8-16M/GPU on 8 GPUs.

For developers...
* Multi-GPU code is more complicated than single-GPU code.
* However, most of the CUDA code is the same for single- and multi-GPU code.

 Some important changes in the particle data arrays and elsewhere make it easier to implement
new SPH formulations and new features.
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