
8 t h D u a l S P H y s i c s W o r k s h o p J a n u a r y 2 8 , 2 0 2 6 – O u r e n s e , S p a i n

Efficient multi-GPU execution of DualSPHysics:

design, challenges, and results

José M. Domínguez

8 t h D u a l S P H y s i c s W o r k s h o p J a n u a r y 2 8 , 2 0 2 6 – O u r e n s e , S p a i n

• Previous work

• New multi-GPU approach

• Implementation details

• Multi-GPU overheads

• Performance results

• Conclusions

Outline

8 t h D u a l S P H y s i c s W o r k s h o p J a n u a r y 2 8 , 2 0 2 6 – O u r e n s e , S p a i n

Previous work: Multi-GPU for supercomputers using MPI (10 years ago…)

• DualSPHysics on GPU made it possible increase

the number of particles from 100k-200k to

around 5M.

• Simulation of real cases needed higher resolution

and/or larger size (more particles).

• However, the memory and performance of one

GPU was very limited.

• The solution to simulate real cases was to use

many GPUs.

• DualSPHysics Multi-GPU for supercomputers

• MPI to use large number of GPUs

• Physical domain decomposition

• Dynamic load balancing for homogeneous and

heterogeneous clusters.

Physical domain division with dynamic

load balancing

GPU
480 cores

GPU
480 cores

OpenMP

CUDA

MPI

CPU
6 cores

GPU
480 cores

CPU
6 cores

CPU
6 cores

8 t h D u a l S P H y s i c s W o r k s h o p J a n u a r y 2 8 , 2 0 2 6 – O u r e n s e , S p a i n

Previous work: Multi-GPU for supercomputers using MPI (10 years ago…)

• DualSPHysics on GPU made it possible increase

the number of particles from 100k-200k to

around 5M.

• Simulation of real cases needed higher resolution

and/or larger size (more particles).

• However, the memory and performance of one

GPU was very limited.

• The solution to simulate real cases was to use

many GPUs.

• DualSPHysics Multi-GPU for supercomputers

• MPI to use large number of GPUs

• Physical domain decomposition

• Dynamic load balancing for homogeneous and

heterogeneous clusters.

• Very good performance results. Efficiency close

to 100% using 128 GPUs!!

100% efficiency simulating 8M/GPU on 128 GPUs

0

32

64

96

128

0 32 64 96 128

GPUs

Speedup - Weak scaling

1M/Gpu
4M/Gpu
8M/Gpu
Ideal

128×

8 t h D u a l S P H y s i c s W o r k s h o p J a n u a r y 2 8 , 2 0 2 6 – O u r e n s e , S p a i n

Largest full SPH free-surface fluid simulation in 2013. More than 1 billion particles!!

• Large wave interaction with oil rig using

109 particles.

• More than 237,000 simulation steps to

simulate 12 physical seconds.

• 79.1 hours using 64 GPUs Tesla M2090.

• Huge complexity for pre-processing,

simulation and post-processing.

• Very interesting challenge but not very

useful.

• Access to a supercomputer is required.

• Too much effort for practical use.

• Many particles do not allow modelling of

complex problems involving different

physical phenomena.

Previous work: Multi-GPU for supercomputers using MPI (10 years ago…)

8 t h D u a l S P H y s i c s W o r k s h o p J a n u a r y 2 8 , 2 0 2 6 – O u r e n s e , S p a i n

Largest full SPH free-surface fluid simulation in 2013. More than 1 billion particles!!

• Large wave interaction with oil rig using

109 particles.

• More than 237,000 simulation steps to

simulate 12 physical seconds.

• 79.1 hours using 64 GPUs Tesla M2090.

• Huge complexity for pre-processing,

simulation and post-processing.

• Very interesting challenge but not very

useful.

• Access to a supercomputer is required.

• Too much effort for practical use.

• Many particles do not allow modelling of

complex problems involving different

physical phenomena.

A large number of particles is not enough

to simulate complex real cases.

• More physics was required.

• More features was required.

• More pre-processing options were required.

• More post-processing tools were required.

Previous work: Multi-GPU for supercomputers using MPI (10 years ago…)

8 t h D u a l S P H y s i c s W o r k s h o p J a n u a r y 2 8 , 2 0 2 6 – O u r e n s e , S p a i n

DualSPHysics evolution

we need more

particles &

acceleration!

Multicore and
GPU acceleration

Advanced pre- and
post-processing tools

Multi-GPU for
Supercomputers

(with MPI)

we need more

particles!

xNNx
more particles is

NOT the solution!

8 t h D u a l S P H y s i c s W o r k s h o p J a n u a r y 2 8 , 2 0 2 6 – O u r e n s e , S p a i n

DualSPHysics evolution

we need more

particles &

acceleration!

Multicore and
GPU acceleration

Advanced pre- and
post-processing tools

Multi-GPU for
Supercomputers

(with MPI)

we need more

particles!

xNNx
more particles is

NOT the solution!

we need

more physics!

New formulations:
BCs, DDTs, shifting,

inlet/outlet…

8 t h D u a l S P H y s i c s W o r k s h o p J a n u a r y 2 8 , 2 0 2 6 – O u r e n s e , S p a i n

DualSPHysics evolution

we need more

particles &

acceleration!

Multicore and
GPU acceleration

Advanced pre- and
post-processing tools

Multi-GPU for
Supercomputers

(with MPI)

we need more

particles!

xNNx
more particles is

NOT the solution!

we need

more physics!

New formulations:
BCs, DDTs, shifting,

inlet/outlet…

New physics: DEM,
Project Chrono,

MoorDyn+, SWASH

8 t h D u a l S P H y s i c s W o r k s h o p J a n u a r y 2 8 , 2 0 2 6 – O u r e n s e , S p a i n

DualSPHysics evolution

we need more

particles &

acceleration!

Multicore and
GPU acceleration

Advanced pre- and
post-processing tools

Multi-GPU for
Supercomputers

(with MPI)

we need more

particles!

xNNx
more particles is

NOT the solution!

we need

more physics!

New formulations:
BCs, DDTs, shifting,

inlet/outlet…

New physics: DEM,
Project Chrono,

MoorDyn+, SWASH

New features: wave
generation and

absorption, external
forces, flexible bodies...

8 t h D u a l S P H y s i c s W o r k s h o p J a n u a r y 2 8 , 2 0 2 6 – O u r e n s e , S p a i n

DualSPHysics evolution

we need more

particles &

acceleration!

Multicore and
GPU acceleration

Advanced pre- and
post-processing tools

Multi-GPU for
Supercomputers

(with MPI)

we need more

particles!

xNNx
more particles is

NOT the solution!

we need

more physics!

New formulations:
BCs, DDTs, shifting,

inlet/outlet…

New physics: DEM,
Project Chrono,

MoorDyn+, SWASH

New features: wave
generation and

absorption, external
forces, flexible bodies... New approaches:

multi-pase liquid-gas,
non-newtonian flows,

ISPH, EulerianSPH…

8 t h D u a l S P H y s i c s W o r k s h o p J a n u a r y 2 8 , 2 0 2 6 – O u r e n s e , S p a i n

DualSPHysics evolution

we need more

particles &

acceleration!

Multicore and
GPU acceleration

Advanced pre- and
post-processing tools

Multi-GPU for
Supercomputers

(with MPI)

we need more

particles!

xNNx
more particles is

NOT the solution!

we need

more physics!

New formulations:
BCs, DDTs, shifting,

inlet/outlet…

New physics: DEM,
Project Chrono,

MoorDyn+, SWASH

New features: wave
generation and

absorption, external
forces, flexible bodies... New approaches:

multi-pase liquid-gas,
non-newtonian flows,

ISPH, EulerianSPH…

Improved pre- &
post-processing

User-friendly GUI
(DesignSPHysics)

Professional
video maker

(VisualSPHysics)

DualSPHysics is now ready for very complex multiphysics simulations!!

8 t h D u a l S P H y s i c s W o r k s h o p J a n u a r y 2 8 , 2 0 2 6 – O u r e n s e , S p a i n

Armour breakwater

Moored floating body Moored point absorber Oscillating wave surge converter

Floating oscillating wave

surge converter

Multi-body attenuator M4

Debris flow with DEM

Floating wind turbineWave star machine

Dam break with liquid & gasNon-Newtonian dam breakVertical slot fishway

8 t h D u a l S P H y s i c s W o r k s h o p J a n u a r y 2 8 , 2 0 2 6 – O u r e n s e , S p a i n

DualSPHysics evolution

we need more

particles &

acceleration!

Multicore and
GPU acceleration

Advanced pre- and
post-processing tools

Multi-GPU for
Supercomputers

(with MPI)

we need more

particles!

xNNx
more particles is

NOT the solution!

we need

more physics!

New formulations:
BCs, DDTs, shifting,

inlet/outlet…

New physics: DEM,
Project Chrono,

MoorDyn+, SWASH

New features: wave
generation and

absorption, external
forces, flexible bodies... New approaches:

multi-pase liquid-gas,
non-newtonian flows,

ISPH, EulerianSPH…

Improved pre- &
post-processing

User-friendly GUI
(DesignSPHysics)

Professional
video maker

(VisualSPHysics)

now we want

more particles

& acceleration!

xn

Multi-GPU for ???

8 t h D u a l S P H y s i c s W o r k s h o p J a n u a r y 2 8 , 2 0 2 6 – O u r e n s e , S p a i n

Implementation based on C++ threads and CUDA streams (not MPI)

The target is…

▪ Multi-GPU useful for researchers using DualSPHysics (not computer engineers)

▪ Full support of all current DualSPHysics functionalities

▪ Aimed at 100-200M particle simulations without extra user effort

▪ Multi-GPU to run on a workstation or computing node with 4-10 GPUs

▪ Accessible hardware for research groups with limited financial resources

New Multi-GPU approach for single-node

multi-GPU machine

Drawbacks:

▪ Limited number of GPUs (2-10 GPUs)

▪ Does not work in distributed systems

▪ Limited size of the simulations?

Advantages:

▪ More portable and easy to use in Linux & Windows

▪ Simpler code using shared CPU memory for main
program data

▪ More efficient communication. MPI overhead was
removed.

▪ Not special pre-processing and post-processing
tools required (more or less...)

8 t h D u a l S P H y s i c s W o r k s h o p J a n u a r y 2 8 , 2 0 2 6 – O u r e n s e , S p a i n

DualSPHysics evolution

we need more

particles &

acceleration!

Multicore and
GPU acceleration

Advanced pre- and
post-processing tools

Multi-GPU for
Supercomputers

(with MPI)

we need more

particles!

xNNx
more particles is

NOT the solution!

we need

more physics!

New formulations:
BCs, DDTs, shifting,

inlet/outlet…

New physics: DEM,
Project Chrono,

MoorDyn+, SWASH

New features: wave
generation and

absorption, external
forces, flexible bodies... New approaches:

multi-pase liquid-gas,
non-newtonian flows,

ISPH, EulerianSPH…

Improved pre- &
post-processing

User-friendly GUI
(DesignSPHysics)

Professional
video maker

(VisualSPHysics)

now we want

more particles

& acceleration!

xn

Multi-GPU for single-node
(threads & cudastreams)

Multi-GPU for
ALL features

100-200M particle
simulations in a very

user-friendly way

Pre-processing
for Large-Scale

Simulations

Post-processing
for Large

Output Data

Current work

8 t h D u a l S P H y s i c s W o r k s h o p J a n u a r y 2 8 , 2 0 2 6 – O u r e n s e , S p a i n

Implementation details

Multi-GPU implementation:

• The physical domain is divided into different parts, and each part is

computed on a GPU.

• A dynamic load balancing is applied to distribute the workload among the

GPUs during simulation

New

• A single execution process that uses multiple threads and multiple GPUs.

• Avoids MPI communication between different processes, and particle

data transfers are from GPU to GPU.

• A single copy of the execution data in the CPU that is shared between the

threads. No execution data transfers is required.

• A single process simplifies the implementation of complex

functionalities in DualSPHysics (wave generation, coupling with Chrono,

coupling with MoorDynPlus, etc.).

Single GPU execution:

Load
initial data

Data transfer
CPU-GPU

Neighbour list
(NL)

Force
calculation (FC)

System Update
(SU)

Data transfer
CPU-GPU

Save data
(occasionally)

40k steps

(1 physical

second)

2.19 ms per step

(1 million particles):

NL: 21.9%

FC: 65.6%

SU: 12.5%

GPU

8 t h D u a l S P H y s i c s W o r k s h o p J a n u a r y 2 8 , 2 0 2 6 – O u r e n s e , S p a i n

Implementation details

• Standard C++ threads and CUDA streams. Not MPI or OpenMP.

• Synchronisation between CPU threads via std::mutex objects and std::atomic variables.

• Synchronisation between GPUs and overlapping between calculation and transfers via cudaStream

and cudaEvent objects (in multi-GPU almost all transfers are asynchronous).

Main thread

thread0 thread1

GPU0 GPU1

• A main CPU thread manages the simulation and other threads

• One CPU thread is created per GPU

• Several synchronisation levels:

• between all threads (n+1 threads)

• between threads with GPU (n threads)

• between two specific threads (2 threads)

• Explicit synchronisation between CPU threads and its GPU due:

• Several GPU tasks are running at the same time on each GPU

• All transfers are asynchronous

• All particle data are maintained in GPU memory. Data transfers

are done directly between GPUs.

8 t h D u a l S P H y s i c s W o r k s h o p J a n u a r y 2 8 , 2 0 2 6 – O u r e n s e , S p a i n

Implementation details

• Two new main classes: JSphMgpuNode and JSphMgpuNodeUnit.

• Most non-SPH features (wave generation, damping, couplings…)

depend on JSph and are common to CPU, GPU and multi-GPU (that

is good!).

• JSphGpuSingle and JSphMgpuNodeUnit use the same CUDA code

for SPH (that is good!).

• NL code is different and more complicated for multi-GPU but does

not usually require changes for new formulations (that is ok!).

• JSphMgpuNodeUnit includes arrays of particle data (like JSphGpu)

and the SPH method code (like JSphGpuSingle).

• JSphMgpuNode (main thread) provides:

• Synchronised access to non-SPH features in JSph from other

threads.

• Combines partial results (reduction and gather operations).

8 t h D u a l S P H y s i c s W o r k s h o p J a n u a r y 2 8 , 2 0 2 6 – O u r e n s e , S p a i n

Multi-GPU overheads

• Multi-GPU requires significant data transfers for each step:

• Particle interaction requires data from neighbouring GPU particles (including cell information).

• The particles move and change from one GPU to another (all the data of these particles must be moved).

• Load balancing redistributes particles and their data among multiple GPUs (only when necessary).

• Multi-GPU requires new calculations not present in single GPU:

• Detection of particles changing GPUs.

• Add arriving particles and remove departing ones.

• Calculate cell information for neighbouring particles.

• Evaluate each GPU's performance to improve load balancing.

• Calculate new possible load balances to improve performance.

• Multi-GPU requires synchronisation between the GPUs:

• Dt calculation starting from all particles.

• Floating objects motion with particles on different GPUs.

• Calculation of fluid elevation and other magnitudes for wave generation.

• Coupling with other solvers (Chrono, MoorDynPlus, etc.).

• Many other functionalities managed by the main thread.

8 t h D u a l S P H y s i c s W o r k s h o p J a n u a r y 2 8 , 2 0 2 6 – O u r e n s e , S p a i n

Multi-GPU overheads

• Multi-GPU requires significant data transfers for each step:

• Particle interaction requires data from neighbouring GPU particles (including cell information).

• The particles move and change from one GPU to another (all the data of these particles must be moved).

• Load balancing redistributes particles and their data among multiple GPUs (only when necessary).

• Multi-GPU requires new calculations not present in single GPU:

• Detection of particles changing GPUs.

• Add arriving particles and remove departing ones.

• Calculate cell information for neighbouring particles.

• Evaluate each GPU's performance to improve load balancing.

• Calculate new possible load balances to improve performance.

• Multi-GPU requires synchronisation between the GPUs:

• Dt calculation starting from all particles.

• Floating objects motion with particles on different GPUs.

• Calculation of fluid elevation and other magnitudes for wave generation.

• Coupling with other solvers (Chrono, MoorDynPlus, etc.).

• Many other functionalities managed by the main thread.

So, implementing SPH for multi-GPU may not be complicated, but

achieving an efficient multi-GPU implementation of DualSPHysics

with all its functionalities is not easy.

✓ This implementation minimises the number and size of data

transfers between GPUs.

✓ Data transfers overlap with calculations using asynchronous

transfers (although it is never perfect).

✓ This implementation minimises the synchronisation points.

8 t h D u a l S P H y s i c s W o r k s h o p J a n u a r y 2 8 , 2 0 2 6 – O u r e n s e , S p a i n

Multi-GPU results

Hardware:

• CPU: 2x AMD EPYC 7282 at 2.8 GHz (16 cores)

• GPU: 8x NVIDIA L40S (48GB):

• Architecture: Ada Lovelace

• Memory: 48 GB GDDR6 with ECC

• Memory Bandwidth: 864 GB/s

• Interface: PCIe 4.0 x16 (no NVLink)

• CUDA cores: 18,176 (142 Multiprocessors)

• FP32 Performance: 91.6 TFLOPS

Similar testcase as used with multi-GPU MPI

Testcases:

• Dam break flow (different versions):

• Basic formulation

• Advanced formulation

• Advanced formulation + floating body

• Advanced formulation + 8 floating bodies

• Advanced formulation with Dynamic Load Balancing

• Particles: 4M to 256M

Performance results:

• Weak efficiency for 2, 4 and 8 GPUs

• Strong scalability for 4 and 8 GPUs

8 t h D u a l S P H y s i c s W o r k s h o p J a n u a r y 2 8 , 2 0 2 6 – O u r e n s e , S p a i n

Multi-GPU results

Testcase 1: Basic formulation
Algorithm: Verlet

Viscosity: Artificial

DDT: none

Boundaries: DBC

Floating bodies: none

Single-GPU runtimes (16M)

Runtime step: 2.19 ms / (steps*M)

Runtime NL/FC/SU: 21.9% / 65.6% / 12.5%

Runtime FC-Fluid: 61.4%

Runtime FC-Bound: 1.2%

Runtime mDBC: none

Runtime Floating: none

Weak efficiency

GPUs 4M/gpu 8M/gpu 16M/gpu 32M/gpu
1 100.0% 100.0% 100.0% 100.0%
2 96.0% 99.1% 100.6% 103.3%
4 88.9% 94.8% 97.9% 101.3%
8 75.8% 86.3% 92.7% 97.4%

8 t h D u a l S P H y s i c s W o r k s h o p J a n u a r y 2 8 , 2 0 2 6 – O u r e n s e , S p a i n

Multi-GPU results

Testcase 2: Advanced formulation
Algorithm: Symplectic

Viscosity: Laminar + SPS

DDT: Fourtakas Full

Boundaries: mDBC no-slip + no penetration

Floating bodies: none

Single-GPU runtimes (16M)

Runtime step: 6.47 ms / (steps*M)

Runtime NL/FC/SU: 21.1% / 68.5% / 10.4%

Runtime FC-Fluid: 59.7%

Runtime FC-Bound: 1.2%

Runtime mDBC: 4.3%

Runtime Floating: none

GPUs 4M/gpu 8M/gpu 16M/gpu 32M/gpu
1 100.0% 100.0% 100.0% 100.0%
2 98.6% 100.8% 103.5% 104.6%
4 93.5% 98.3% 101.9% 102.9%
8 82.0% 92.6% 98.1% 100.1%

Weak efficiency

8 t h D u a l S P H y s i c s W o r k s h o p J a n u a r y 2 8 , 2 0 2 6 – O u r e n s e , S p a i n

Multi-GPU results

Testcase 3: Advanced + 1 floating body
Algorithm: Symplectic

Viscosity: Laminar + SPS

DDT: Fourtakas Full

Boundaries: mDBC no-slip + no penetration

Floating bodies: 1x large floating body

Single-GPU runtimes (16M)

Runtime step: 7.83 ms / (steps*M)

Runtime NL/FC/SU: 17.6% / 69.8% / 12.6%

Runtime FC-Fluid: 58.6%

Runtime FC-Bound: 1.0%

Runtime mDBC: 7.0%

Runtime Floating: 6.8%

GPUs 4M/gpu 8M/gpu 16M/gpu 32M/gpu
1 100.0% 100.0% 100.0% 100.0%
2 97.8% 99.3% 102.4% 103.2%
4 91.9% 94.8% 98.3% 99.7%
8 80.4% 86.5% 91.2% 93.0%

Weak efficiency

8 t h D u a l S P H y s i c s W o r k s h o p J a n u a r y 2 8 , 2 0 2 6 – O u r e n s e , S p a i n

Multi-GPU results

Testcase 4: Advanced + 8 floating bodies
Algorithm: Symplectic

Viscosity: Laminar + SPS

DDT: Fourtakas Full

Boundaries: mDBC no-slip + no penetration

Floating bodies: 8x floating bodies

Single-GPU runtimes (16M)

Runtime step: 7.65 ms / (steps*M)

Runtime NL/FC/SU: 18.0% / 72.4% / 9.6%

Runtime FC-Fluid: 60.8%

Runtime FC-Bound: 1.1%

Runtime mDBC: 7.3%

Runtime Floating: 3.7%

Weak efficiency

GPUs 4M/gpu 8M/gpu 16M/gpu 32M/gpu
1 100.0% 100.0% 100.0% 100.0%
2 98.2% 99.7% 103.4% 104.3%
4 93.9% 97.2% 101.0% 102.4%
8 84.2% 85.4% 96.3% 97.9%

8 t h D u a l S P H y s i c s W o r k s h o p J a n u a r y 2 8 , 2 0 2 6 – O u r e n s e , S p a i n

Multi-GPU results

SPHERIC Benchmark Test Case #2
Algorithm: Symplectic

Viscosity: Laminar + SPS

DDT: Fourtakas Full

Boundaries: mDBC no-slip + no penetration

Runtimes (32M)

Single-GPU 13.3 h

4 GPUs 3.5 h (3.8x faster)

8 GPUs 2.5 h (5.3x faster)

Time: 0.5s Time: 1.0s Time: 2.0s

8 t h D u a l S P H y s i c s W o r k s h o p J a n u a r y 2 8 , 2 0 2 6 – O u r e n s e , S p a i n

Multi-GPU results

Largest full SPH free-surface fluid simulation in 2013. More than 1 billion particles!!

• Large wave interaction with oil rig using

109 particles.

• More than 237,000 simulation steps to

simulate 12 physical seconds.

• 79.1 hours using 64 GPUs Tesla M2090.

• Huge complexity for pre-processing,

simulation and post-processing.

• Very interesting challenge but not very

useful.

• Access to a supercomputer is required.

• Too much effort for practical use.

• Many particles do not allow modelling of

complex problems involving different

physical phenomena.

This simulation with 109 particles is possible with…

▪ 8x L40S (45 GB) in less than 27.4 hours (2.9 times faster)

8 t h D u a l S P H y s i c s W o r k s h o p J a n u a r y 2 8 , 2 0 2 6 – O u r e n s e , S p a i n

Multi-GPU results

8 t h D u a l S P H y s i c s W o r k s h o p J a n u a r y 2 8 , 2 0 2 6 – O u r e n s e , S p a i n

Multi-GPU in package v6.0 beta

Examples using multi-GPU:

▪ main/01_DamBreak

▪ main/18_Bathymetry

▪ mdbc/04_DamBreak

▪ mdbc/07_WavesCylinder

main/01_DamBreak/wCaseDambreak_win64_4GPU.bat

8 t h D u a l S P H y s i c s W o r k s h o p J a n u a r y 2 8 , 2 0 2 6 – O u r e n s e , S p a i n

Conclusions

• The multi-GPU version is not finished yet (periodic boundaries and inlet/outlet are missing), but...

• Right now, we can already simulate real complex cases with more than 1 billion particles.

• Improvements in pre-processing and post-processing allow us to address large multi-GPU

simulations without extra difficulty for the user.

• Good efficiency simulating simple and complex cases.

• Efficiency close to 100% simulating 8-16M/GPU on 8 GPUs.

For developers…

• Multi-GPU code is more complicated than single-GPU code.

• However, most of the CUDA code is the same for single- and multi-GPU code.

• Some important changes in the particle data arrays and elsewhere make it easier to implement

new SPH formulations and new features.

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 16
	Diapositiva 17
	Diapositiva 19
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 37
	Diapositiva 39

