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Rigid body dynamics

Compute frictional contact forces.

Collision detection algorithms.

Define surface properties.

Multi-body dynamics

Mechanical constraints between rigid and flexible objects.

Add motors, linear actuators, springs and dampers.

Apply forces and torques.

Flexible structure dynamics

Use the FEA module to create finite elements and model flexible parts.

Beams, cables, shells, solid tetrahedrons and hexahedrons.

Project Chrono
Open-source multi-physics simulation engine. https://projectchrono.org/

Tasora et al. (2016). Chrono: An Open Source Multi-physics

Dynamics Engine. High Performance Computing in Science

and Engineering. https://doi.org/10.1007/978-3-319-40361-8_2

Tasora et al. (2016)
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Martínez-Estévez et al. (2023b). Coupling an SPH-based solver with

an FEA structural solver to simulate free surface flows interacting

with flexible structures. Computer Methods in Applied Mechanics and

Engineering, 410, 115989. https://doi.org/10.1016/j.cma.2023.115989

Finite Element Analysis (FEA) for structure.

Based on the 3-D Euler-Bernoulli theory.

Corotational formulation.

Large rotations and displacements.

Damping can be defined for the beam element.

Flexible structure dynamics https://projectchrono.org/

Project Chrono
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Martínez-Estévez, I., Domínguez, J. M., Tagliafierro, B., Canelas, R. B., García-Feal, O., Crespo, A. J. C., & Gómez-

Gesteira, M. (2023a). Coupling of an SPH-based solver with a multiphysics library. Computer Physics 

Communications, 283, 108581. https://doi.org/10.1016/j.cpc.2022.108581

Citations in Scopus: 66

Coupling SPH-Chrono
Reference journal paper
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• Discretises the domain into particles

• Solves the fluid

• Solves the fluid-solid interaction

• Dynamic library (.dll / .so)

• Controls the communication process

• Handles the information transfer

• Dynamic library (.dll / .so)

• Solves the mechanical constraints

• Solves solid-solid interaction

• Solves the flexible structure

Coupling SPH-Chrono
Software components

• Abstraction: only changes in DSPHChronoLib

https://github.com/DualSPHysics/DSPHChronoLib.git

Martínez-Estévez et al. (2023a). Coupling of an 

SPH-based solver with a multiphysics library. 

Computer Physics Communications, 283, 108581. 
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Martínez-Estévez, I., Tagliafierro, B., El Rahi, J., Domínguez, J. M., Crespo, A. J. C., Troch, P., & Gómez-Gesteira, M. (2023b). 

Coupling an SPH-based solver with an FEA structural solver to simulate free surface flows interacting with flexible 

structures. Computer Methods in Applied Mechanics and Engineering, 410, 115989. https://doi.org/10.1016/j.cma.2023.115989

Citations in Scopus: 41

Coupling SPH-FEA
Reference journal paper
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Coupling SPH-FEA
Initial setup Martínez-Estévez et al. (2023b). Coupling an

SPH-based solver with an FEA structural solver

to simulate free surface flows interacting with

flexible structures. Computer Methods in Applied

Mechanics and Engineering, 410, 115989.

https://doi.org/10.1016/j.cma.2023.115989

• SPH discretises both: fluid and structure.

• Structure is divided into blocks in SPH.

• A block is a set of particles.

• Each block is assigned to a beam node.

Initial setup
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Coupling SPH-FEA
Fluid-structure interaction

1. Performs 

particle interaction

𝑭𝑖2. Computes 

structure forces
3. Solves 

structure

4. Computes 

deformation and stress

𝑹𝑖

Martínez-Estévez et al. (2023b). Coupling an

SPH-based solver with an FEA structural solver

to simulate free surface flows interacting with

flexible structures. Computer Methods in Applied

Mechanics and Engineering, 410, 115989.
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ValidationValidation

Experimental data from Antoci et al. (2007). 

Structure length L=0.079 m.

Structure thickness S=0.005 m. 

Antoci et al. (2007). Numerical simulation of fluid–structure 

interaction by SPH. Computers & Structures, 85(11), 879–890. 

https://doi.org/10.1016/j.compstruc.2007.01.002

Breaking water-column with an elastic gate

Coupling SPH-FEA

Parameter Value

Young’s modulus (E) 10 MPa

Poisson’s ratio (ν) 0.5

Density (𝜌) 1100 kg/m3

Martínez-Estévez et al. (2023b). Coupling an

SPH-based solver with an FEA structural solver

to simulate free surface flows interacting with

flexible structures. Computer Methods in Applied

Mechanics and Engineering, 410, 115989.
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Vertical and horizontal displacement of the structure tip

Validation

Antoci et al. (2007). Numerical simulation of fluid–structure 

interaction by SPH. Computers & Structures, 85(11), 879–890. 

https://doi.org/10.1016/j.compstruc.2007.01.002

Breaking water-column with an elastic gate

FEA resolution N=32 nodes.

SPH resolutions dp=S/2, S/4, S/8, S/16.

Coupling SPH-FEA
Martínez-Estévez et al. (2023b). Coupling an

SPH-based solver with an FEA structural solver

to simulate free surface flows interacting with

flexible structures. Computer Methods in Applied

Mechanics and Engineering, 410, 115989.

https://doi.org/10.1016/j.cma.2023.115989
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Experimental data from Liao et al. (2015).

Structure length L=0.09 m.

Structure thickness S=0.004 m. 

Liao et al. (2015). Free surface flow impacting on an elastic

structure: Experiment versus numerical simulation. Applied Ocean

Research, 50, 192–208. https://doi.org/10.1016/j.apor.2015.02.002

Dam break impacting a flexible obstacle

Validation

Coupling SPH-FEA

Parameter Value

Young’s modulus (E) 3.5 MPa

Poisson’s ratio (ν) 0.5

Density (𝜌) 1114 kg/m3

Martínez-Estévez et al. (2023b). Coupling an

SPH-based solver with an FEA structural solver

to simulate free surface flows interacting with

flexible structures. Computer Methods in Applied

Mechanics and Engineering, 410, 115989.
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Validation

Liao et al. (2015). Free surface flow impacting on an elastic

structure: Experiment versus numerical simulation. Applied Ocean

Research, 50, 192–208. https://doi.org/10.1016/j.apor.2015.02.002

Horizontal displacement histories for the tip of the beam

air effect

Breaking water-column with an elastic gate

FEA resolution N=32 nodes.

SPH resolutions dp=S/4, S/8, S/16, S/32.

Coupling SPH-FEA
Martínez-Estévez et al. (2023b). Coupling an

SPH-based solver with an FEA structural solver

to simulate free surface flows interacting with

flexible structures. Computer Methods in Applied

Mechanics and Engineering, 410, 115989.
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2. Build the project using CMake

Indicate the path to built cmake (CMAKE_INSTALL_PREFIX).

Add Chrono’s dependencies (e.g. Eigen library).

Windows: Microsoft Visual Studio 2022 (Chrono.sln).

Compiler: Microsoft Visual C++ Compiler (MSVC v143).

Linux: Makefile will be generated.

Compiler: g++ >= 11 

3. Compile the code in Release mode

Windows: Chrono_core.dll

Linux: libChrono_core.so
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Coupling SPH-Chrono

1. Download/clone the forked Chrono’s repository

https://github.com/imestevez/chrono.git

Chrono

https://github.com/imestevez/chrono.git


2. Build the project using CMake

Indicate the cmake folder where Chrono was built (Chrono_DIR).

Enable the use of FEA (ENABLE_FEA=ON).

Windows: Microsoft Visual Studio 2022 (DSPHChronoLib.sln).

Compiler: Microsoft Visual C++ Compiler (MSVC v143).

Linux: Makefile will be generated.

Compiler: g++ >= 11 

3. Compile the code in Release mode

Windows: dsphchrono.dll/.lib

Linux: libdspchrono.so
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Coupling SPH-Chrono

1. Download/clone the DSPHChronoLib repository

https://github.com/DualSPHysics/DSPHChronoLib.git

DSPHChronoLib

Chrono’s CMAKE_INSTALL_PREFIX

https://github.com/DualSPHysics/DSPHChronoLib.git
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Coupling SPH-Chrono

1. Copy/paste resources to the DualSPHysics package.

Header files from DSPHChronoLib/Source into DualSPHysics/src/source

• JChronoData.h

• DSPHChronoLib.h

Windows: 

• Chrono_core.dll and dsphchrono.dll into DualSPHysics/bin/windows

• dsphchrono.lib into DualSPHysics/src/lib/vs2022

Linux: libChrono_core.so and libdsphchrono.so into both:

• DualSPHysics/bin/linux

• DualSPHysics/src/lib/linux_gcc

DualSPHysics

2. Compile the code in Release|ReleaseCPU mode

Windows: DualSPHysics_v6.0_win64.exe or DualSPHysics_v6.0CPU_win64.exe

Linux: DualSPHysics_v6.0_linux64 or DualSPHysics_v6.0CPU_linux64

binaries

header files

directories
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XML configuration
XML file:
case-execution-special-chrono

<special>

 <chrono>

  <savedata value="0.01" />

  <schemescale value="1" />

  <collision activate="true" />

  <scaleforce>

   <body mkbound="1" x="0.01" y="1" z="1" />

   <body mkbound="2" comment="Scale forces in all directions.">

    <scale time="0" x="0.01" y="1" z="1"/>

    <scale time="10" x="1" y="1" z="0.5"/>

   </body>

  </scaleforce>

  <bodyfixed id="domain" mkbound="0" /> 

  <bodyfloating id="box1" mkbound="1" />

  <bodyfloating id="box2" mkbound="2" modelfile="box.obj" />

  <link_linearspring idbody1="domain" idbody2="box1" />

  <link_coulombdamping idbody1="domain" idbody2="box1" />

  <link_hinge idbody1="box1" idbody2="box2" />

  <link_spheric idbody1="box2" idbody2="box3" />

  <link_pointline idbody1="box4" />

  <link_pointline idbody1="box4" idbody2="box5" >

  <link_spheric idbody1="box5" />

  <link_pulley idbody1="box1" idbody2="box5" />

 </chrono>

</special>

savedata: Saves CSV with data exchange

ChronoBody_forces.csv,

ChronoExchange_mkbound_XX.csv

schemescale: Creates VTK file with the initial 

scheme of Chrono objects using the given scale

CfgChrono_Scheme.vtk

collision: Section to activate collisions

scaleforce: Defines a force scaling factor 

bodyfloating & bodyfixed: Indicates the rigid 

objets to be solved by Chrono

link_xxxx: Section to define mechanical 

constraints.
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XML configuration 
XML file: case-execution-special-chrono-chronofea for FEA

configfea: Section for FEA configuration

savedata: Saves CSV data for FEA objects

fea_data/

savevtk: Saves VTK files for FEA

NodesVtk/

floating: Defines a floating body as a FEA object

loadforces: Enables the application of external 

forces on nodes

onlyfile: Indicates if only external forces are 

applied (true) or both fluid+external (false)

<chrono>

 <configfea>

  <savedata value="0.01" />

  <savevtk value="true" />

  <floating mkbound="1"/>

  <floating mkbound="2">

   <loadforces onlyfile="false" file="ExternalForces.csv"/>

  </floating>

 </configfea>

 ...

</chrono>

DualSPHysics_v6.0_BETA
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XML configuration 
XML file: case-execution-special-chrono for FEA

<chrono>

  <configfea ... />

 <nodes>

  <node ref="0" fixed="false" x="0" y="0" z="0"/>

  <node ref="1" fixed="false" x="0.35" y="0" z="0"/>

 </nodes>

 <feafloating id="cylinder1" mkbound="1">

  <beamEuler segments="10" >

   <pointA noderef="0" />

   <pointB noderef="1" />

   <section shape="0">

      <radius value="0.04" />  

        <density value="7850" />

    <poisson value="0.3" />

    <youngmodulus value="210e6" /> 

    <rgdamping value="0.0" />

   </section>

  </beamEuler>

 </feafloating>

</chrono>

nodes: Section to define FEA nodes

node: Define the node initial position and if it is fixed or free

feafloating: Define the structure and link it to a floating 

body using mkbound

beamEuler: Define a Euler-Bernoulli beam

segments: Number to segments to discretise the 

beam

pointA & pointB: Indicate the node that are used as start 

and end points of the beam

section: Properties of the beam and shape

0:circular: uses radius

1:rectangular: uses width and thickness

<section shape="1">

 <width value="0.04" />

 <thickness value="0.04" />
or

DualSPHysics_v6.0_BETA
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FSI in DualSPHysics
Unified TL-SPH  

(O’Connor & Rogers, 2021)

SPH–FEA Coupling

(Martínez-Estévez et al., 2023b)

Approach Unified SPH framework for fluid + flexible structures Two-way, partitioned SPH–FEA coupling

Structural 

model

Total Lagrangian SPH (TL-SPH)

Fully meshless

SPH fluid + FEA mesh-based

Euler–Bernoulli beam theory for structure

Numerical 

coupling
Directly integrated into DualSPHysics framework DualSPHysics + DSPHChronoLib + Chrono

Computational 

model
Fully GPU-accelerated both fluid and structure GPU for fluid and multi-CPU for structure

Structucture 

performance
Computationally demanding due to TL-SPH solid dynamics

Low computational cost due to reduced-order dedicated 

structural model

Requires data exchange between solvers

Use cases / 

features

Unified, fully meshless flexible FSI within DualSPHysics

Valid for any continuum (any geometry)

Has simplified constraints (clamped only)

Large deformations and structural dynamics for (slender) 

structures

Handle more complex constraints (e.g. pinned)

Extensible to multiphysics: collision detection and multibody 

dynamics via Chrono
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FSI in DualSPHysics

Important Note

The SPH-FEA approach does not replace the unified TL-SPH formulation; it is a complementary 

modelling strategy that extends DualSPHysics toward multibody and collision-driven multiphysics FSI.

Key message

Unified TL-SPH

A unified, fully meshless SPH formulation in which both the fluid and the flexible structure are solved within 

DualSPHysics, with the structure represented using a Total Lagrangian SPH (TL-SPH) formulation.

SPH–FEA coupling

A modular DualSPHysics–Chrono framework that couples SPH-FEA for FSI, extensible to multiphysics, with 

contact/collision handling, multibody dynamics, and alternative structural models.
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