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m Motivation : How to improve energy absorption of WEC?

Resonance in regular wave

Irregular / highly nonlinear waves

WEC Array?

Energy output
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® \We may find solutions from deep reinforce learning



m Motivation : How to improve energy absorption of WEC?
» Concept of Deep Reinforcement Learning (DRL)
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® Make decisions guided by neuron network
® Agent takes suitable action to maximize reward in a particular situation

[1] wiki/Reinforcement learning



m Motivation : How to improve energy absorption of WEC?

Environment ;: Ocean
State : Real time wave conditions
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® SPH: provides environment; DRL: Train neuron network - Take actions - Maximize rewards



m Motivation : Multi-agent decision-making

» Multi WECs / agents » Single NN, multi outputs
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X More observations make single-agent input

too large to train

® Multi-agent decision-making scenarios are

X Real-time communication to obtain all

common ih engineering agents' observations is infeasible



m Research gap and solutions

B Improve energy absorption of WEC - Coupling SPH with DRL
B Case with Multiple WECs - Multi-agent DRL
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B SPH-MADRL coupling model



m DRL Algorithm: Soft actor-critic
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[1] Haarnoja, Tuomas, et al. "Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor." International conference on machine

learning. Pmlr, 2018.
[2] Du, H., et al. "Enabling Al-generated content (AIGC) services in wireless edge networks. arXiv 2023." arXiv preprint arXiv:2301.03220. 9



m MADRL: Centralized training decentralized execution

Training
Environment
Actor i Actor j
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Centralized Training: Critic
network - Learn with global
information for cooperative
policy optimization
Decentralized Execution:
Actor network - Get actions
independently using local

observations
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m Coupling SPH with MADRL

{ Start SPH ¢
—p| Cell-link list DualSPHysics LibTorch
® Libtorch is linked to v
, Particles interaction
DualSPHysics as a ¥
dynamic library Fluid-Structure Coupling = Actlvel 0 Xcs > Crreiiis sElies: d SO {19
| control | Flow field | Compute rewards replay buffer
® All codes are in (u, p, 1, etc.)
C++ & CUDA and 1

-
- u, Q,F, etc. No
can be parallelized Particles updatingJ< Get new actions @

using GPU e . I e

No /\ Yes Update neuron networks Sample from
£ty ? End SPH using MASAC

max * replay buffer
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B Numerical validations



m Point absorber wave energy converter : overview
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Make the PTO parameter k, adaptive
to cope with different incident wave

—> increase power output
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£ J Point absorber wave energy converter : 2D regular wave
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o k exhibits two peaks in one wave period, (1) near the wave crest (2) near the wave trough

o A higher energy output is observed when the wave passes the trough compared to the crest phase
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Point absorber wave energy converter : 2D regular wave
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m Point absorber wave energy converter : 3D irregular wave

Time: 45.0

With DRL training

Without DRL training
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K§4 Point absorber wave energy converter : Energy distribution
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® Trained WEC improves absorption efficiency
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k§4 Point absorber wave energy converter : 3D irregular wave
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® Energy output increase for PA,, PA,, PA; and total system are 37.7%, 15.7%, —4.0% and 21.5%

® The slight decrease in the energy output of PA; reflects the cooperative effect among the agents
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n Summary: SPH-DRL coupling model

B Multi Agent DRL - Achieve cooperative optimization among multiple WECs

B SPH + DRL model - Active control in ocean engineering

B GPU parallelism - 3D practical engineering applications

B Ongoing work: Multibody rigid dynamics

Start SPH

Lessiasen. PTTIITITN <
CPU~:§ ...... gpu

Cell-link list Du';ISPHysics LibTorch
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End SPH

Update neuron networks Sample from
using MASAC replay buffer
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n Ongoing work: Multibody rigid dynamics

Initial velocity

1 Input: vy, Vo, @) 1 15 @)
Bal JointlJl_l Output: v,
2 Reward: f (r;, v| ®; ¢,)
® Before training ® During training
CartPole in Pytorch Demo

® After training
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https://docs.pytorch.org/tutorials/intermediate/reinforcement_q_learning.html

Thank you for your attention
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