

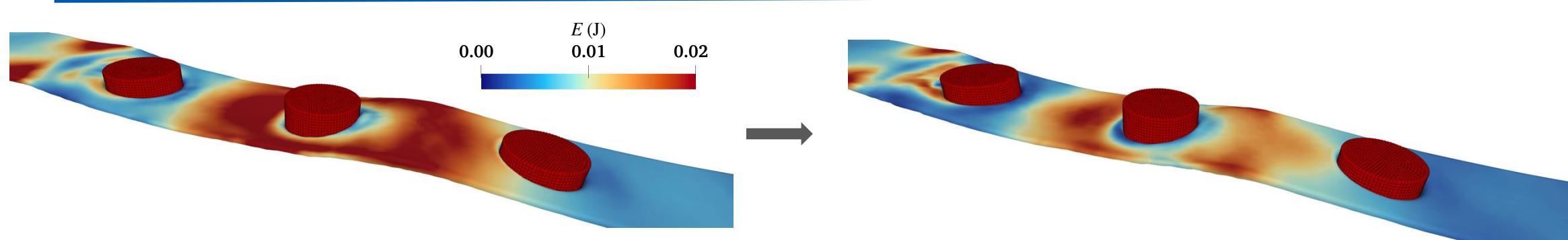
Coupling SPH with Multi-Agent DRL for Enhanced Energy Capture of WEC Arrays

Yi Zhan^{1,2}, Iván Martínez-Estévez², Min Luo¹, Alejandro J. C. Crespo²,
José M. Domínguez², Abbas Khayyer³

¹ Ocean College, Zhejiang University ² EPhysLab, CIM-UVIGO, Universidade de Vigo

³ Department of Civil and Earth Resources Engineering, Kyoto University

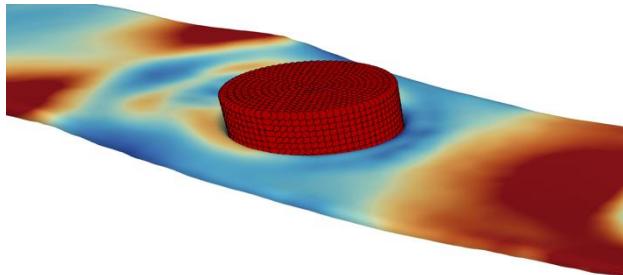
29th January 2026



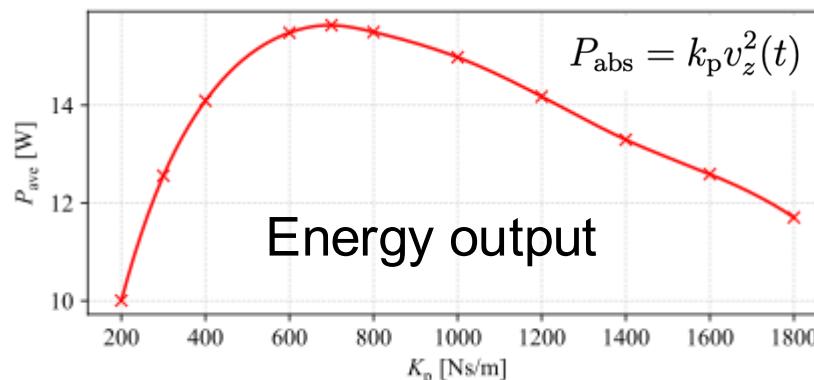
Contents

- Motivation
- SPH-MADRL coupling model
- Numerical validations

Resonance in regular wave

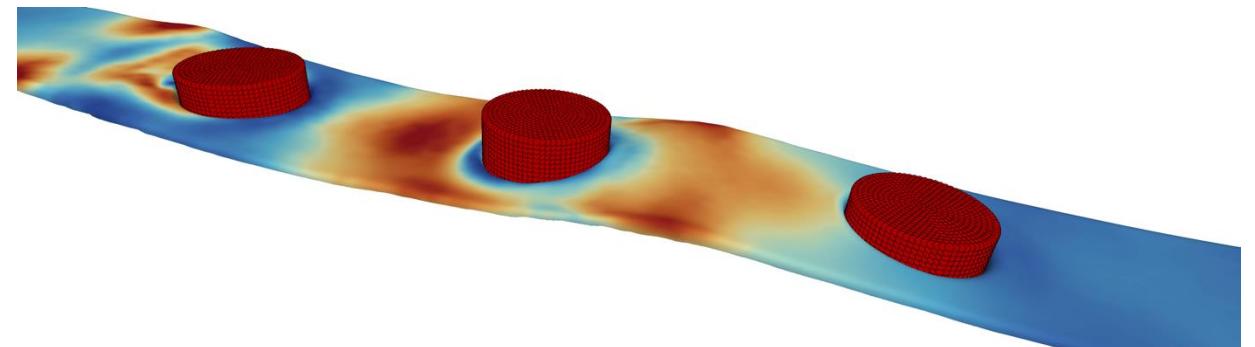


$$M \frac{d\mathbf{V}}{dt} = \sum_j m_j \mathbf{f}_j + \mathbf{D}_t \quad \mathbf{D}_t = -k_p \mathbf{v}$$



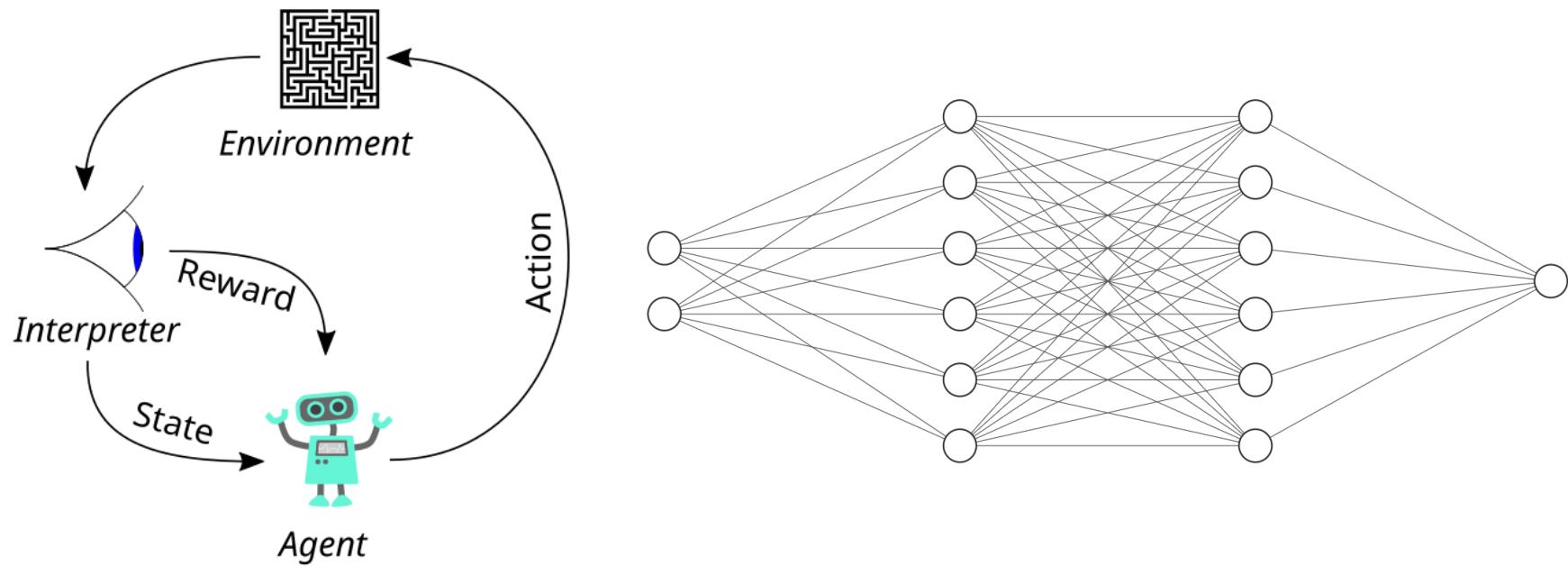
Irregular / highly nonlinear waves

WEC Array?



- We may find solutions from deep reinforce learning

➤ Concept of Deep Reinforcement Learning (DRL)

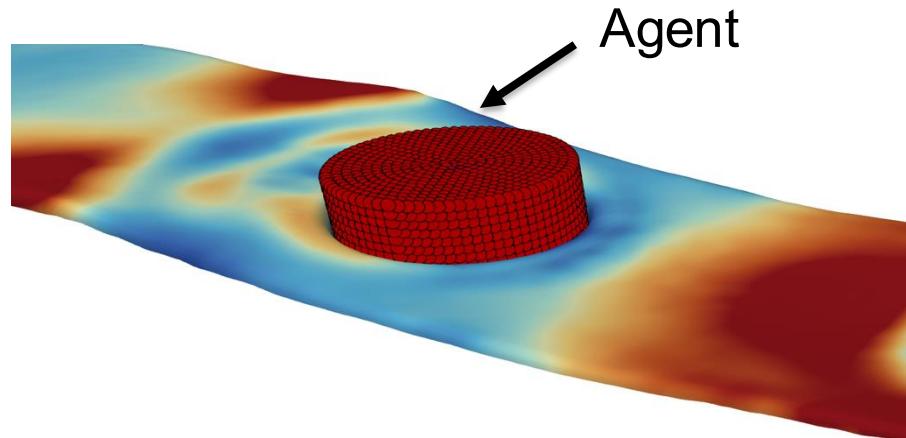


- Make decisions guided by neuron network
- Agent takes suitable action to maximize reward in a particular situation

➤ DRL for WEC

Environment : Ocean

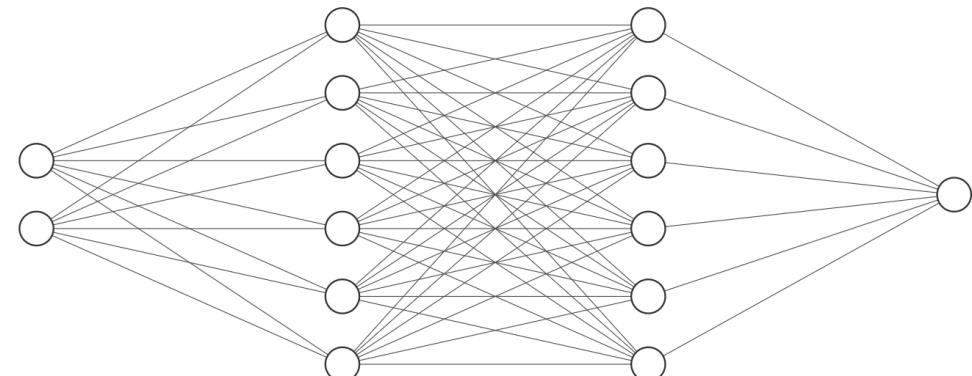
State : Real time wave conditions



Reward : Energy output

Action : k_p

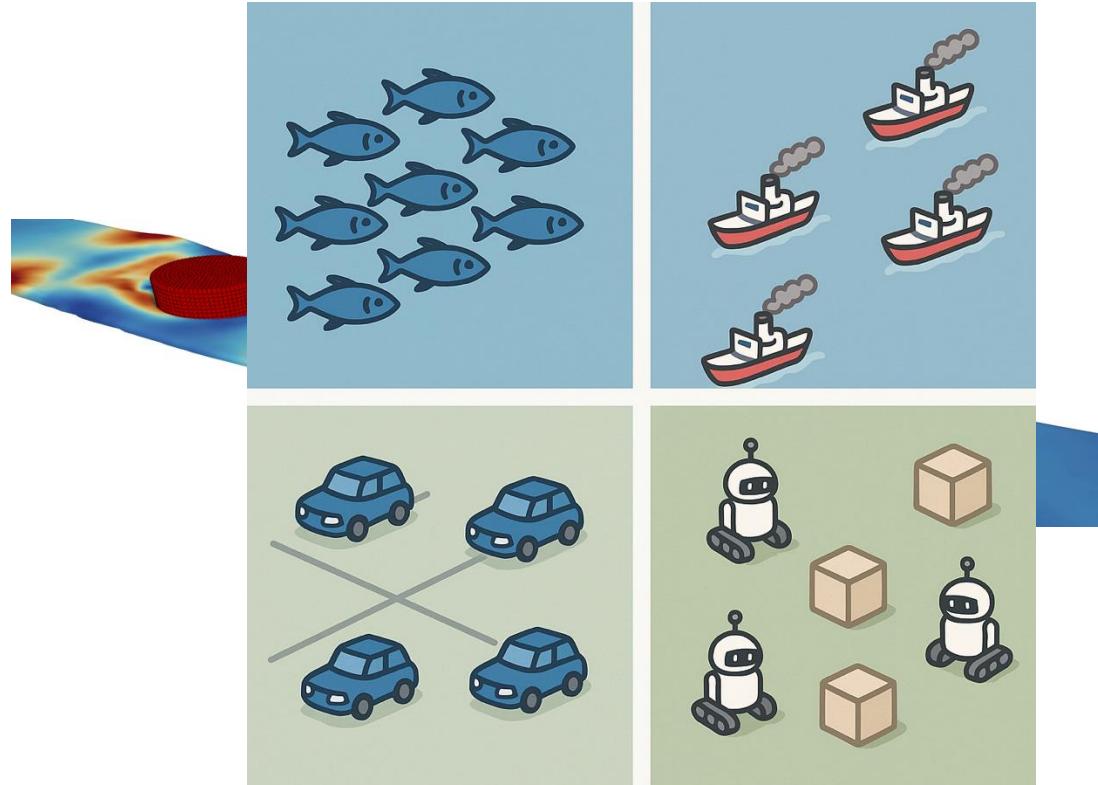
$$M \frac{d\mathbf{V}}{dt} = \sum_j m_j \mathbf{f}_j + \mathbf{D}_t \quad \mathbf{D}_t = -k_p \mathbf{v}$$



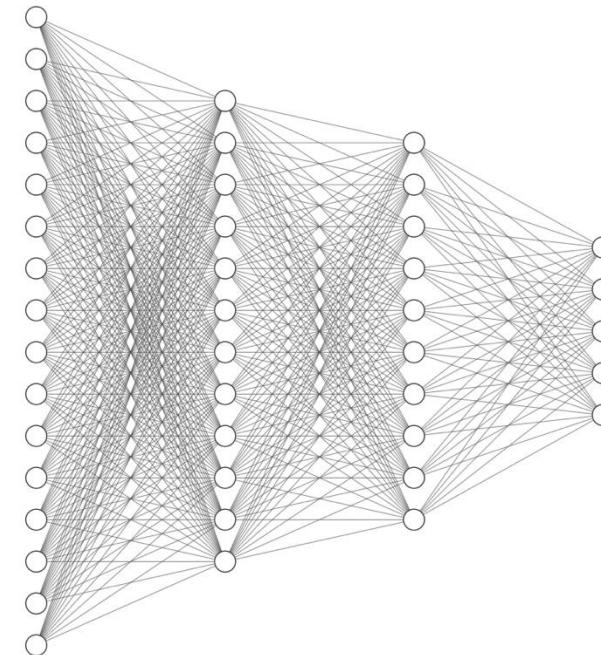
- SPH: provides environment; DRL: Train neuron network → Take actions → Maximize rewards

1.1 Motivation : Multi-agent decision-making

➤ Multi WECs / agents



➤ Single NN, multi outputs



- ✖ More observations make single-agent input too large to train
- ✖ Real-time communication to obtain all agents' observations is infeasible

- Multi-agent decision-making scenarios are common in engineering

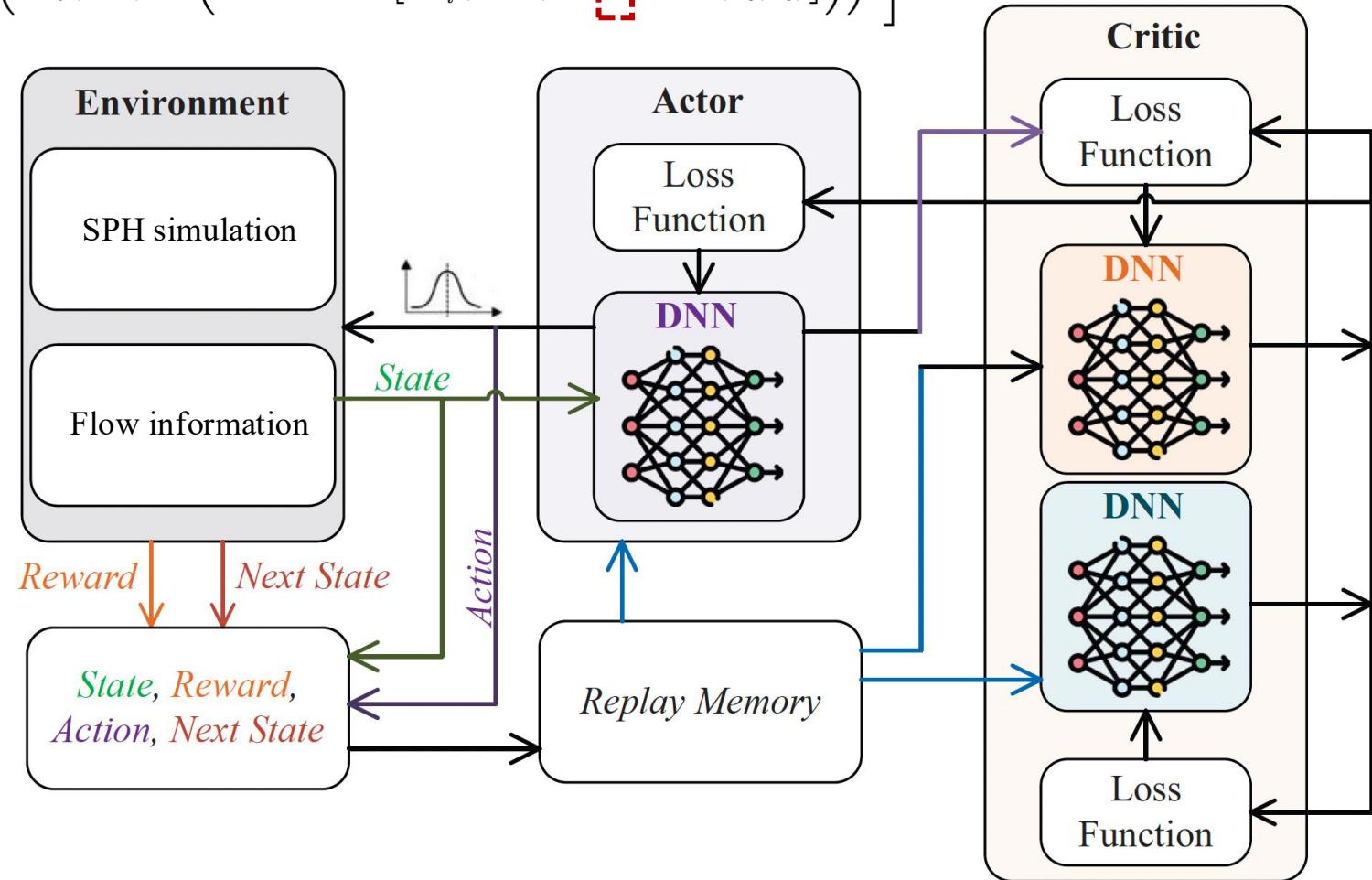
- Improve energy absorption of WEC → Coupling SPH with DRL
- Case with Multiple WECs → Multi-agent DRL

Contents

- Motivation
- SPH-MADRL coupling model
- Numerical validations

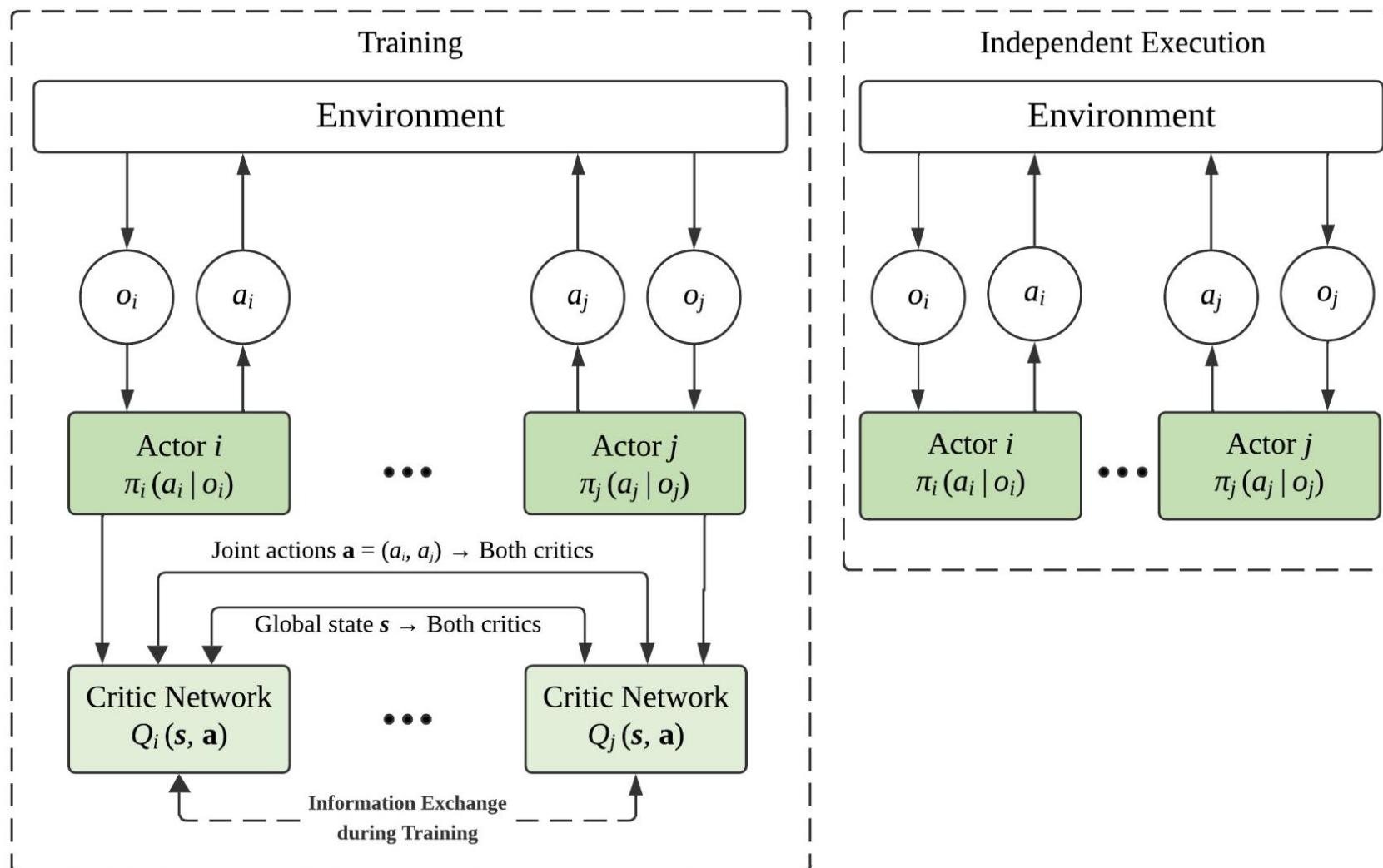
$$J_Q(\theta_i) = \mathbb{E}_{(s,a,r,s') \sim \mathcal{D}} \left[\left(Q_{\theta_i}(s, a) - \left(r + \gamma \mathbb{E}_{a' \sim \pi} [Q_{\bar{\theta}_i}(s', a') - \alpha \log \pi_i(a'_i | s'_i)] \right) \right)^2 \right]$$

- **Actor-Critic Framework:** Actor → learns optimal policy; Critic → evaluates the action by Actor NN
- **Entropy-Regularized Learning:** Promotes exploration by maximizing both reward and entropy
- **Automatic Temperature Tuning:** Dynamically balances exploration and exploitation



[1] Haarnoja, Tuomas, et al. "Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor." *International conference on machine learning*. Pmlr, 2018.

[2] Du, H., et al. "Enabling AI-generated content (AIGC) services in wireless edge networks. arXiv 2023." *arXiv preprint arXiv:2301.03220*.

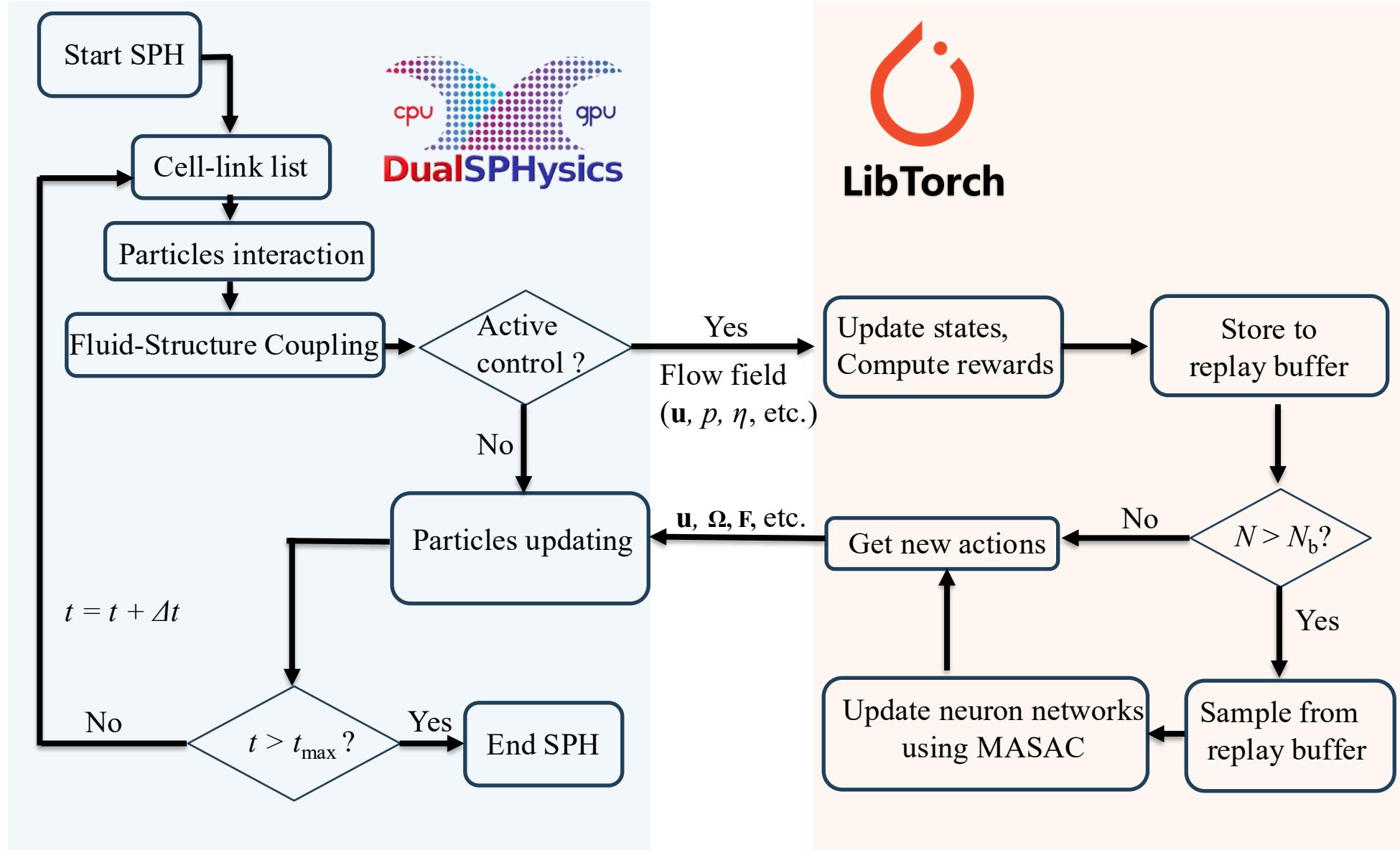


- **Centralized Training:** Critic network → Learn with global information for cooperative policy optimization
- **Decentralized Execution:** Actor network → Get actions independently using local observations

2.2

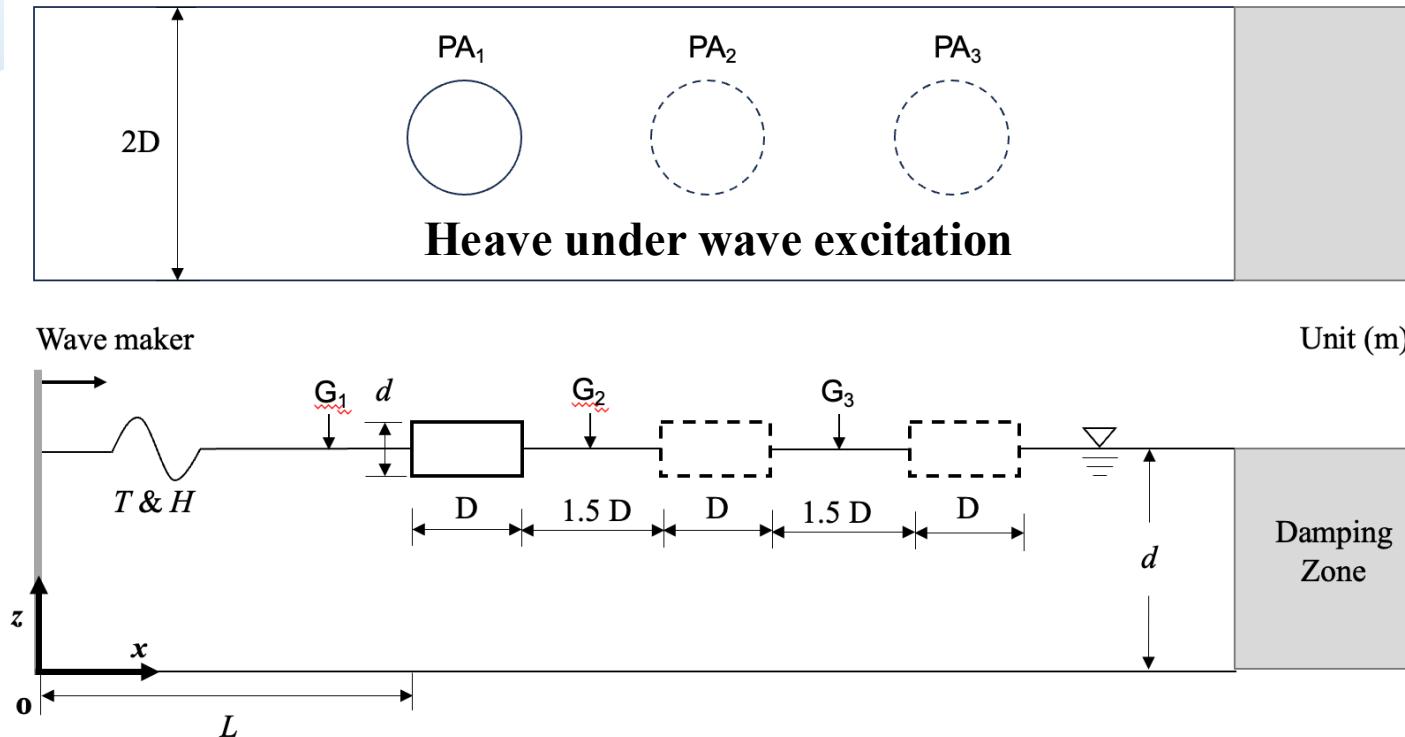
Coupling SPH with MADRL

- Libtorch is linked to DualSPHysics as a dynamic library
- All codes are in C++ & CUDA and can be parallelized using GPU



Contents

- Motivation
- SPH-MADRL coupling model
- Numerical validations



NN Output : $o_i, o_i \in [-1, 1]$ $k_{p,i} = k_{\text{base}} + o_i \Delta k_{\text{max}}$

NN Input : $G_{i,1} - G_{i,3}$, $d(G_{i,1} - G_{i,3}) / dt$, $v_{z,i}$, z_i , \mathbf{a}_i^{n-1}

Reward : $r_i = (1 - \gamma_p)P_{\text{out},i} + \gamma_p \frac{1}{N} \sum_{j=1}^N P_{\text{out},j}$ $P_{\text{out},i} = k_{p,i} v_i^2$
 WEC Energy output Encourage collaborating

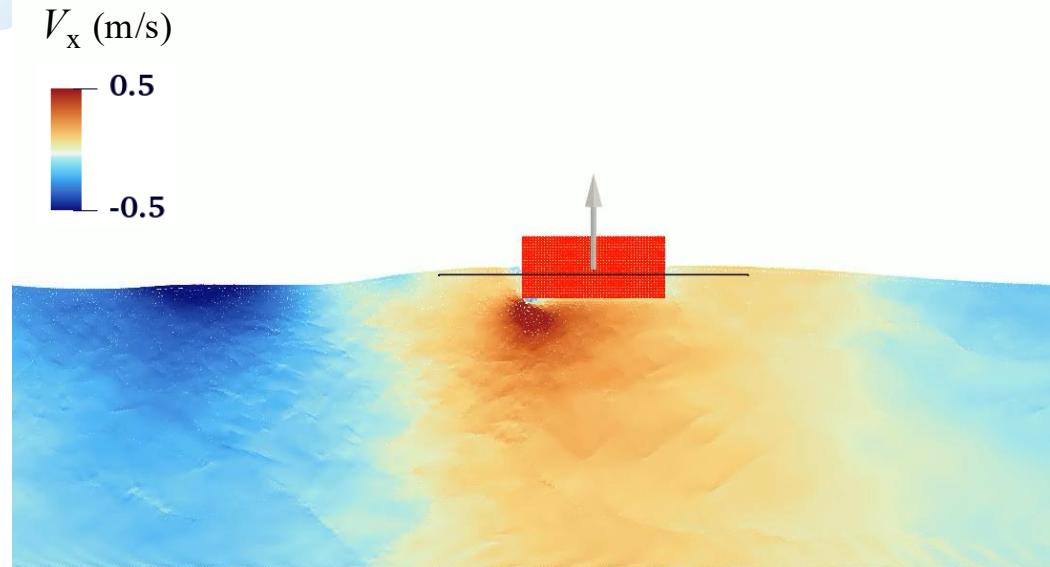
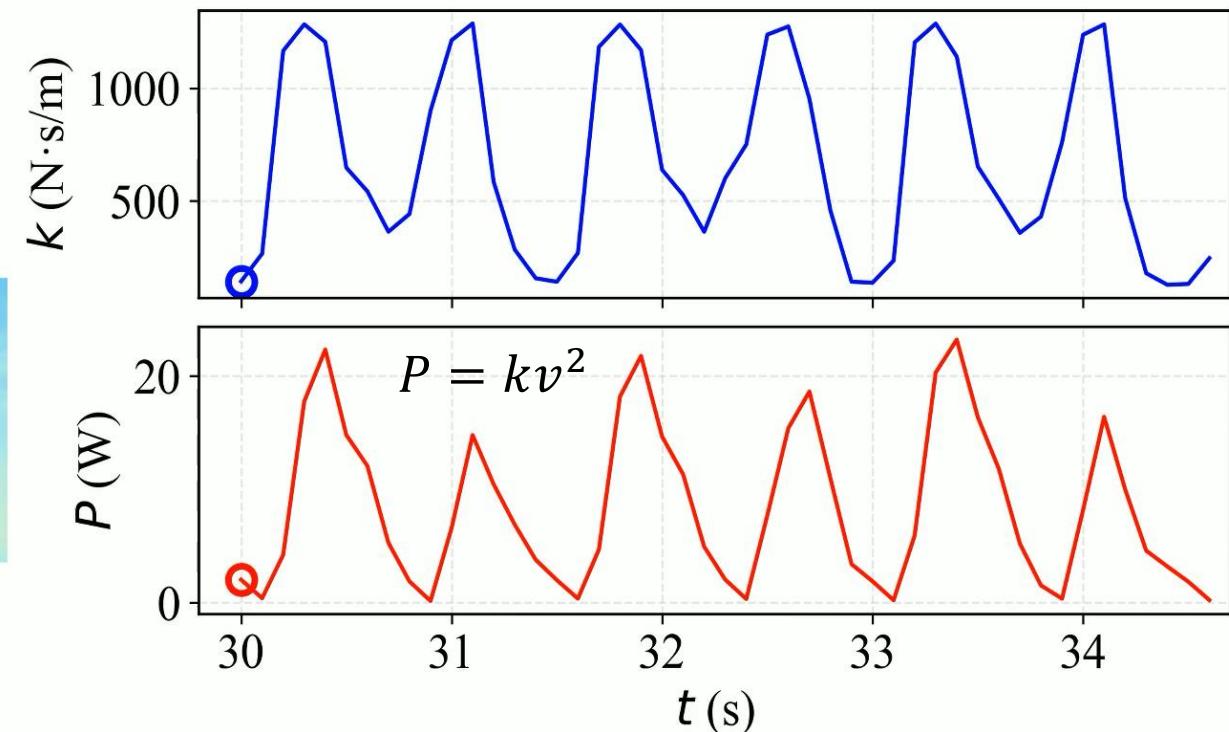
$$M \frac{d\mathbf{V}}{dt} = \sum_j m_j \mathbf{f}_j + \mathbf{D}_t \quad \mathbf{D}_t = -k_p \mathbf{v}$$

Power output $P_{\text{abs}} = k_p v_z^2(t)$

Make the PTO parameter k_p adaptive to cope with different incident wave
 \rightarrow increase power output

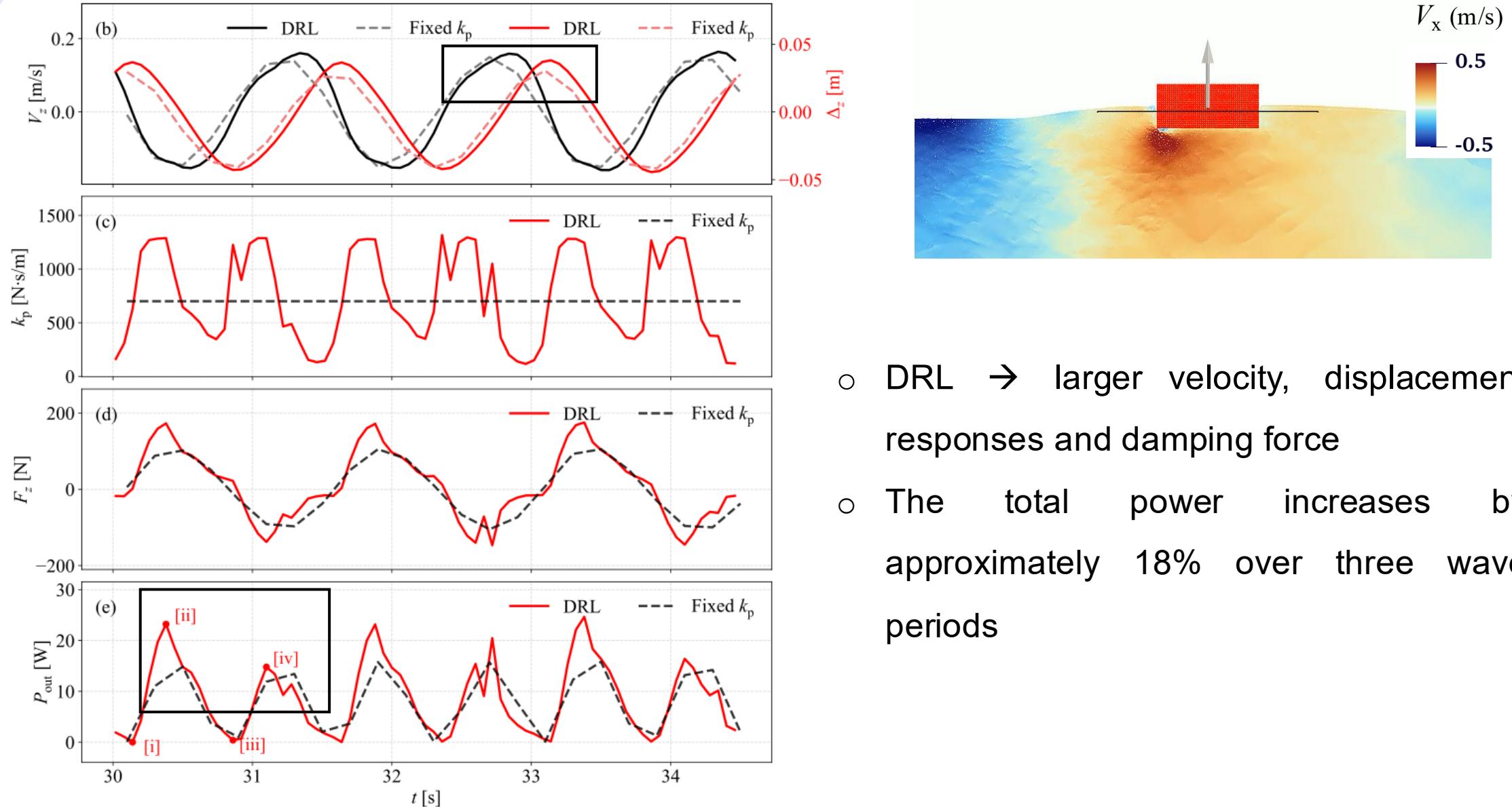
3.1

Point absorber wave energy converter : 2D regular wave



- k exhibits two peaks in one wave period, (1) near the wave crest (2) near the wave trough
- A higher energy output is observed when the wave passes the trough compared to the crest phase

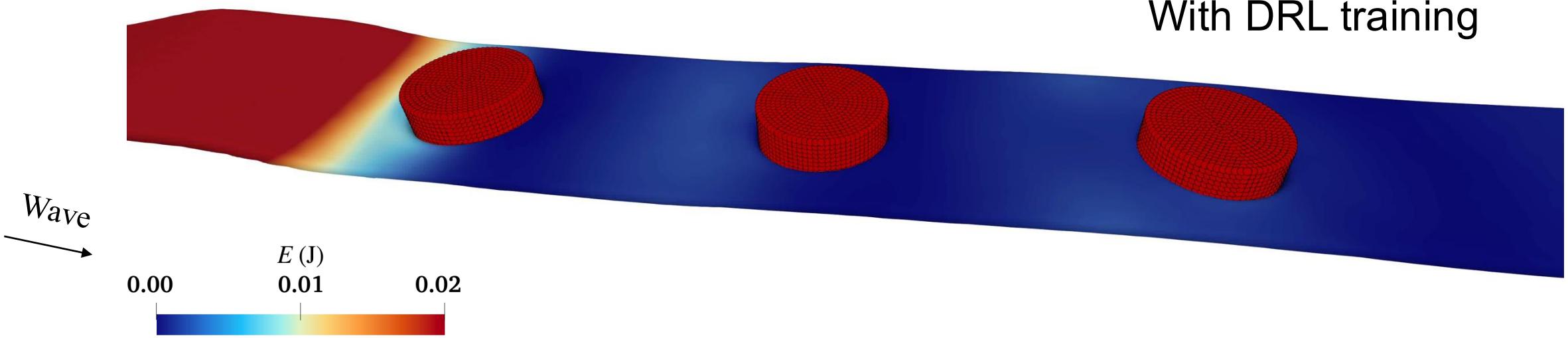
Point absorber wave energy converter : 2D regular wave



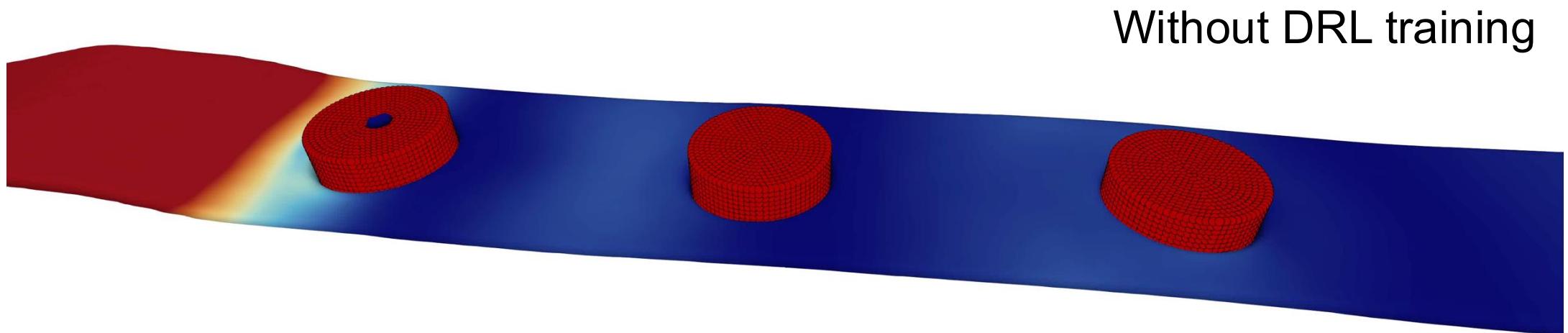
3.2

Point absorber wave energy converter : 3D irregular wave

Time: 45.0



With DRL training

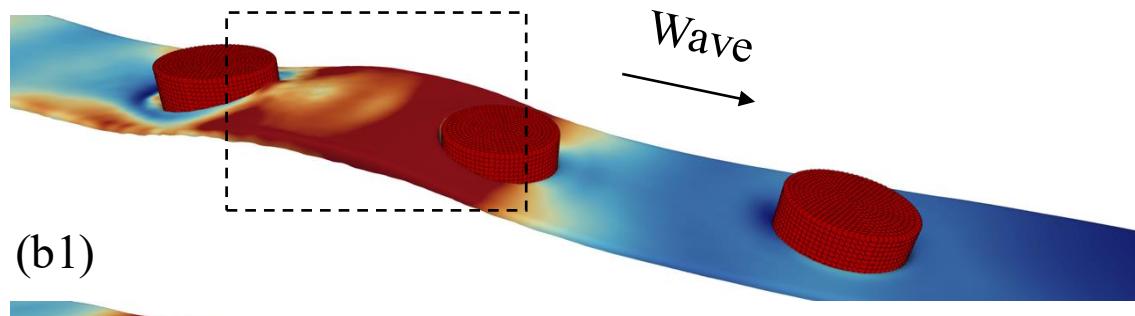


Without DRL training

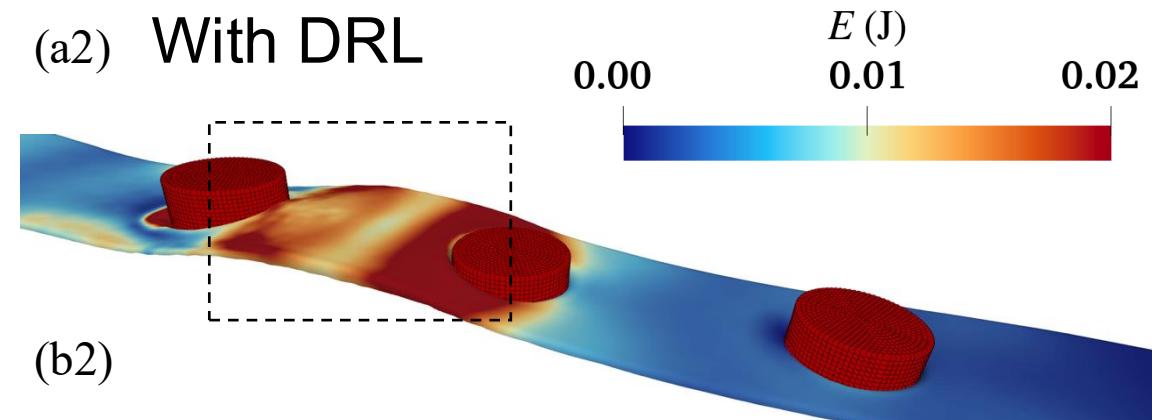
3.2

Point absorber wave energy converter : Energy distribution

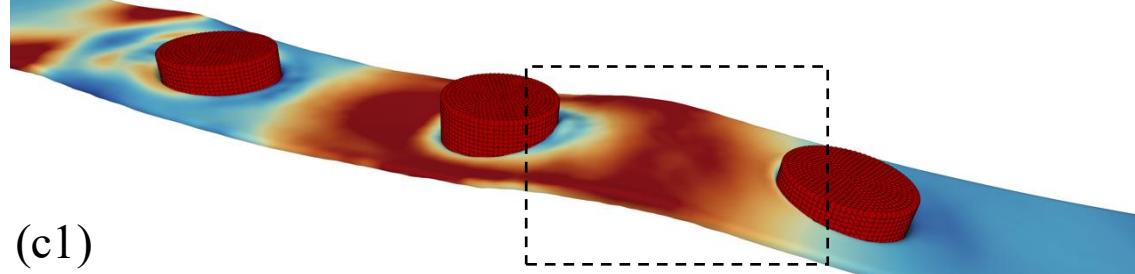
(a1) Without DRL



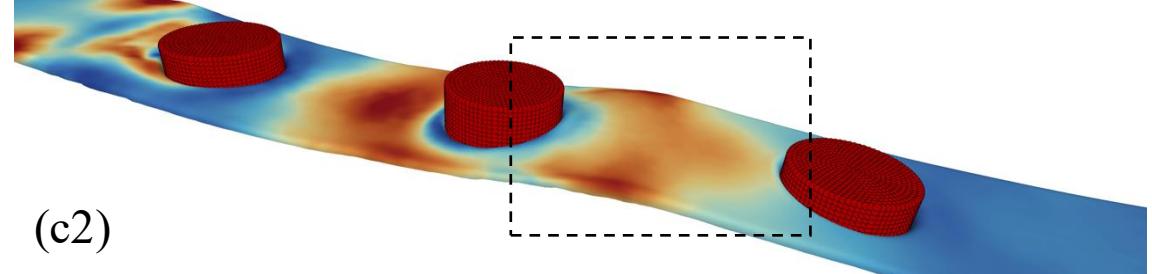
(a2) With DRL



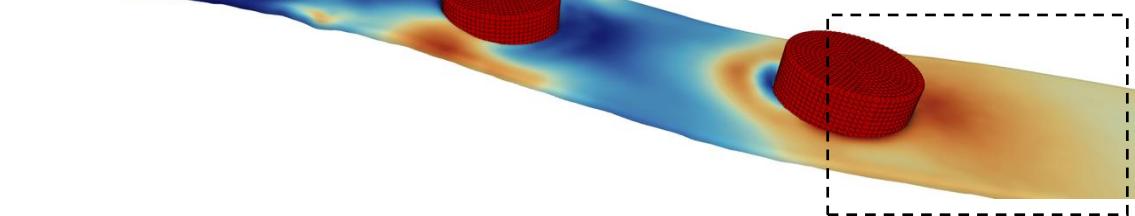
(b1)



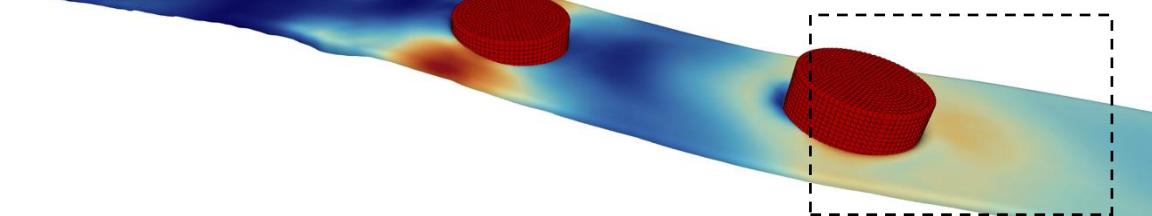
(b2)



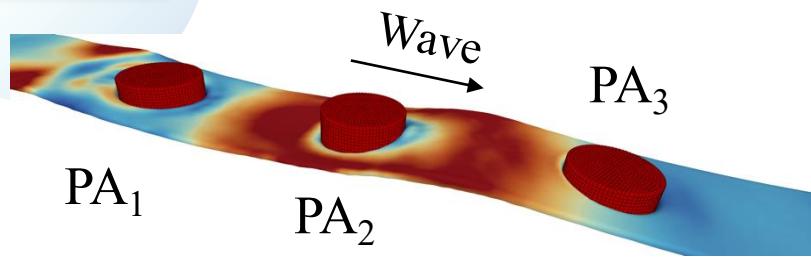
(c1)



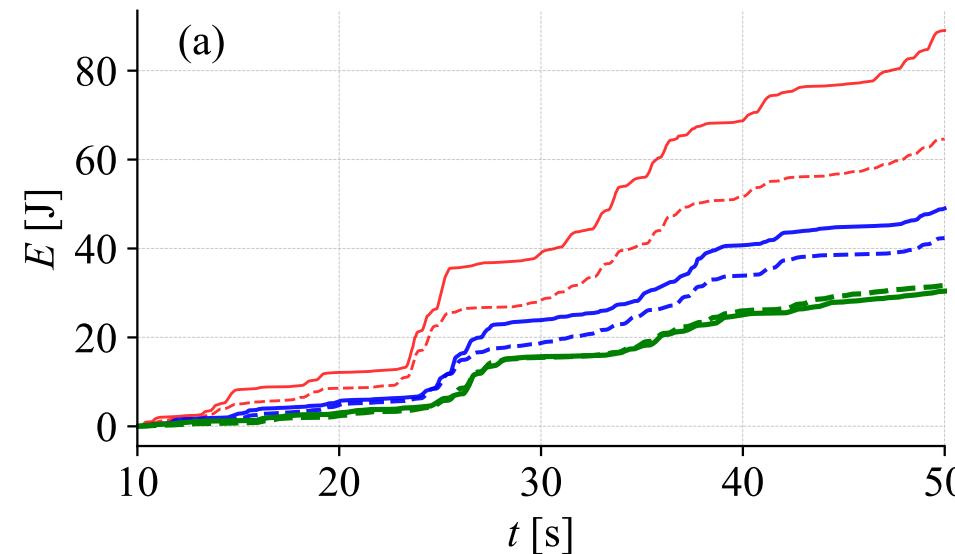
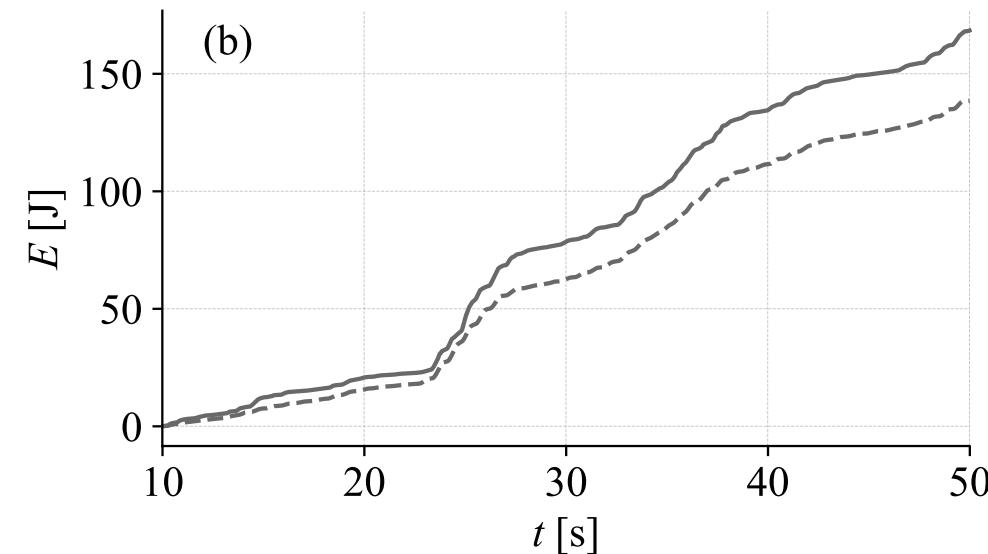
(c2)



- Trained WEC improves absorption efficiency

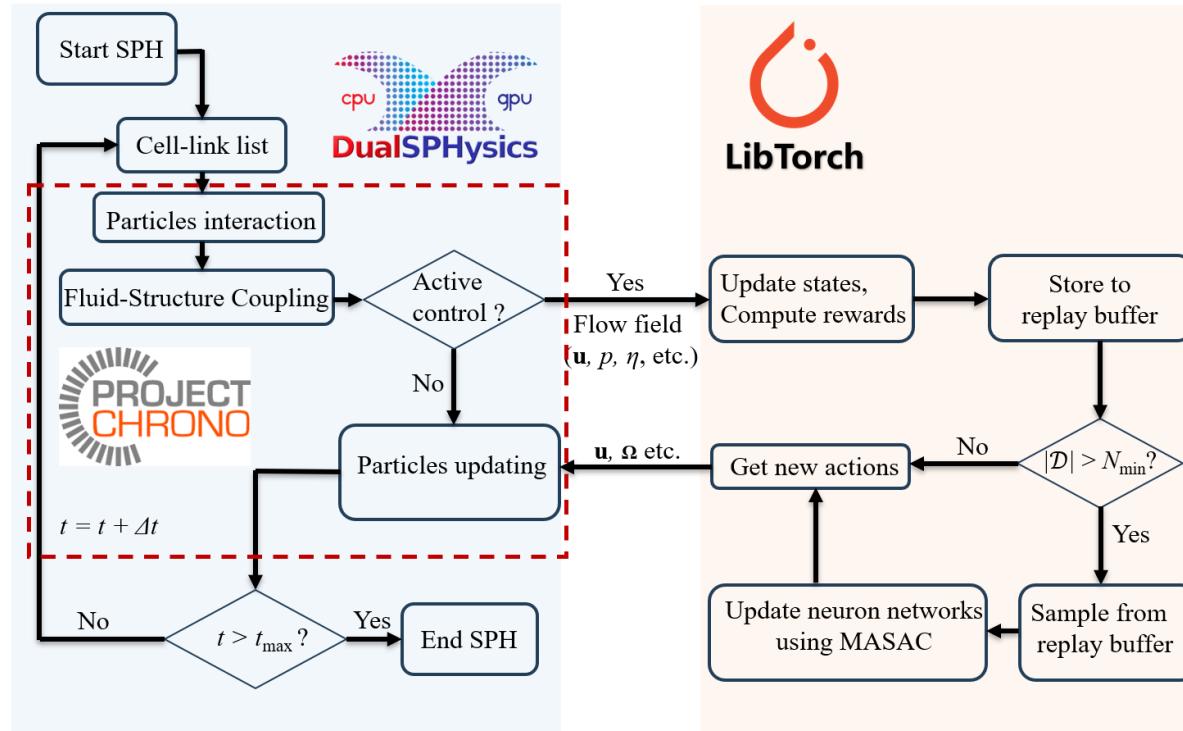


— PA₁ (DRL)
 - - - PA₁ (Fixed k_p)
 — PA₂ (DRL)
 - - - PA₂ (Fixed k_p)
 — PA₃ (DRL)
 - - - PA₃ (Fixed k_p)
 — Total (DRL)
 - - - Total (Fixed k_p)

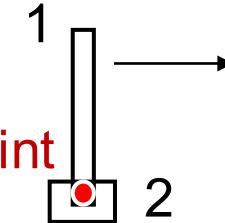


- Energy output increase for PA₁, PA₂, PA₃ and total system are 37.7%, 15.7%, -4.0% and 21.5%
- The slight decrease in the energy output of PA₃ reflects the cooperative effect among the agents

- SPH + DRL model → **Active control** in ocean engineering
- Multi Agent DRL → Achieve **cooperative optimization** among multiple WECs
- GPU parallelism → 3D practical engineering applications
- Ongoing work: Multibody rigid dynamics



Initial velocity



Input: $\mathbf{v}_1, \mathbf{v}_2, \boldsymbol{\omega}_1, \mathbf{r}_1, \mathbf{r}_2, \boldsymbol{\varphi}_2,$

Output: \mathbf{v}_2

Reward: $f(\mathbf{r}_1, \mathbf{v}_1, \boldsymbol{\omega}_1, \boldsymbol{\varphi}_2)$

- Before training

- During training

- After training

[CartPole in Pytorch Demo](#)

Thank you for your attention