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Background and Motivation
• Scientists now rely on GPUs in HPC systems 

to conduct their simulations

• DualSPHysics is a key tool for modelling fluid 
behaviour using HPC systems

• Data-center and supercomputer energy use is 
expected to increase significantly in the 
coming years

• Purpose of this work is therefore to answer 
the following questions:

How much energy do SPH simulations 
consume?

What practical methods can reduce 
this energy use?



Energy Consumption: How is it estimated?

Energy = Power × Time

Time-to-Solution (TTS)→ taken from DualSPHysics 
.out file

Power →3rd party tools measure power metrics of 
different hardware, averaged across simulation

Hardware power consumption depends 
on the Setup

Main hardware responsible →GPUs 
(Graphics Processing Units)

Note: It is crucial to attempt to measure 
power output of all components

Not always possible, depends on the setup

GPU remains the priority when it comes to 
measurements



Hardware Setup #1: Personal Laptop

• GPU: RTX 2060 MAX Q, CPU: Ryzen 9 4800HS

Data Collection:
• NVIDIA SMI for GPU metrics
• MSI Afterburner for system-wide metrics (incl. CPU)
• Total energy consumption roughly estimated through combining 

CPU and GPU power metrics
• Fan cooling, display, other electronics have minimal power draw 

compared to CPU and GPU



Hardware Setup #2: University’s HPC system (CSF)

• Comprised of dozens of nodes
• Node used:

• 4x Nvidia A100 GPU, 
• 4x  48-Core AMD EPYC CPUs,

• For simulation: 1 GPU, 8 CPU cores

Data collection
• Nvidia SMI for the single A100 GPU
• SLURM reports consumption of the entire node (through IPMI module)

• Captures power consumption of entire board that the node operates on
• Lacks granularity: Includes the idle components not being used

Compute nodes from the CSF
Source: Manchester IT services



DualSPHysics Setup

• Static water simulation: StillWedge test case provided with 
DualSPHysics

• Time steps are consistent, time taken to for each timestep is 
the same

• Allows us to extrapolate data more predictably and 
accurately→ No need to run hours of simulations

• All metrics shown will reflect 1 simulated physical second



Results: Energy consumption on default settings
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Results: Energy consumption (GPU vs Total)

92% GPU

8% 
CPU
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Results: Examples of Equivalent Consumptions

• Laptop: Boiling a quarter of a kettle (0.04kWh)
• CSF: Boiling a full Kettle boil (0.12kWh)

1M Particles 

(Low-Res)

• Laptop: Running electric oven for 30 mins(2.2 kWh)
• CSF: : Running electric oven for 90 mins (6.20 kWh)

16M Particles

 (Med-Res)

• Both: Week of average UK household electricity use 
(53.1kWh)

53-68M Particles

(High-Res)

Equivalent  Energy Consumption



What practical methods can reduce this energy use?

“Underclocking”

The practice of reducing the clock speed of a processing unit



How does Underclocking work?

All processing units, (CPUs, GPUs), are fundamentally complex 
arrangements of billions of transistors

Transistors need to switch on and off extremely quickly to perform 
operations, such as calculating forces on particles

By reducing the speed of this switching, we can cause significant drops in 
power draw, at the expense of performance

ENERGY = POWER * TIME If the TTS increases dramatically, reducing the 
power no longer gives the intended benefit



Underclocking Results
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Underclocking Results
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Underclocking Results
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Underclocking Results: Optimal Frequencies

Clock 
Speed

1m 
(2D)

4m 
(2D)

16m 
(2D)

64m 
(2D)

1m 
(3D)

7m 
(3D)

53m 
(3D)

86m 
(3D)

810 1.33 1.25 1.24 1.18 1.31 1.35 1.34 1.27

960 1.18 1.14 1.12 1.12 1.25 1.18 1.20 1.20

1110 1.44 1.08 1.04 0.98 1.18 1.12 1.13 1.10

1185 1.17 0.98 1.00 1.02 1.08 1.05 1.07 1.04

1260 1.14 1.00 1.00 0.96 1.08 1.01 1.00 1.02

1335 1.06 0.91 0.88 0.88 0.91 0.91 0.91 0.94

1410 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Clock 
Speed 1m 2m 4m 16m 26m 32m

810 0.88 0.88 0.93 0.93 1.04 1.06

915 0.83 0.83 0.86 0.89 0.98 0.99

1020 0.80 0.81 0.84 0.85 0.93 0.93

1125 0.80 0.81 0.84 0.84 0.92 0.92

1230 0.81 0.83 0.86 0.85 0.93 0.92

1335 0.86 0.86 0.92 0.90 0.93 0.95

Heatmaps of Normalized Energy Consumption (for varying particle count)

HPC
• Optimal frequency for GPU savings: 1110 

MHz
• 21-24% GPU Energy savings

• Optimal frequency for total energy savings: 
1335 MHz 
• 6%-12% Total Energy savings

Laptop
• Optimal frequency between around 1020-

1125 MHz

• 12%-23% GPU energy savings

• 8%-20% Total energy savings



Concluding Remarks 

• Personal workstations equipped with mid to high-end GPUs are 
sufficient for running medium sized simulations

• Underclocking alone has a considerable impact on energy savings 
across the entire system despite the high overheads in HPC 
systems (6-12% energy reduction!)

• Further Work: Undervolting, implementation of workload-aware 
frequency scaling (DVFS)
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Thank you for your time!
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