

Industrial use of DualSPHysics: past, present and future

George Fourtakas

Department of Fluids and Environment,

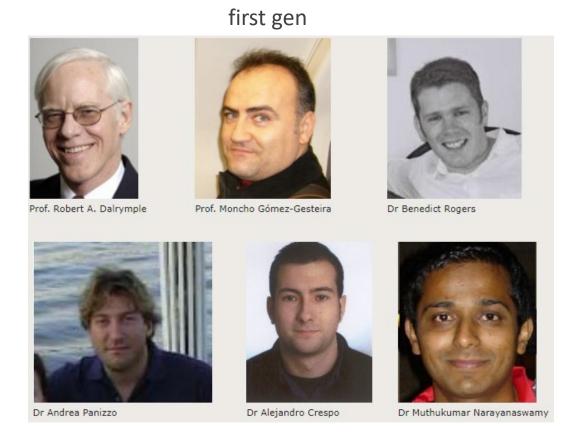
The University of Manchester, Manchester, UK

Overview

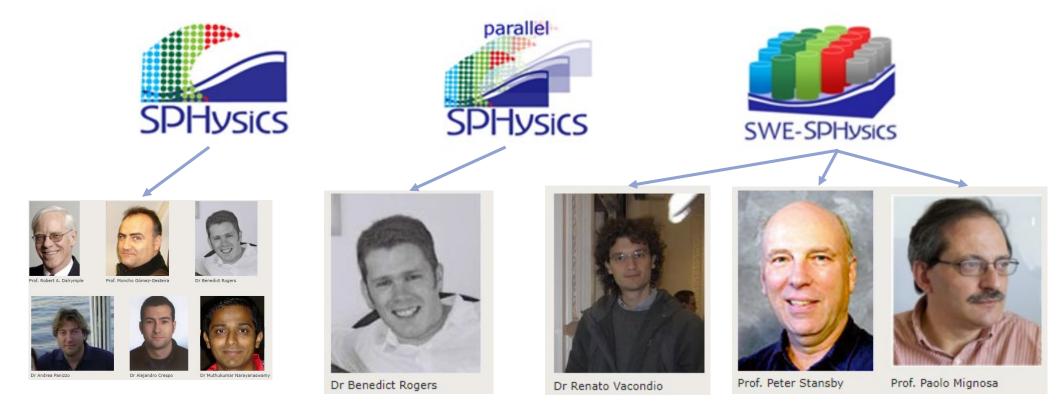
- Historical background of the solver
- The DualSPHysics project and group
- Numerical framework
- Academic development and target applications
- Industrial R&D use
- Future research
- Summary

- An initiative after the realisation:
 - SPH had enormous potential in wave mechanics (why, will become apparent in a minute)
 - Research groups kept developing in-house solvers with very short timespan (some of those inhouse codes are now well developed, see GPUSPH and Simcenter SPH solver (Siemens)
 - Formulations varied widely between implementations
 (Sometimes literature reported different results for the same formulation)

The solver has an open-source philosophy released in 2007 and named



- A two-part journal publication accompanied the solver
 - Gómez-Gesteira, M., et al. "SPHysics—development of a free-surface fluid solver—Part 1: Theory and formulations." Computers & Geosciences 48 (2012): 289-299.
 - Gómez-Gesteira, M., et al. "SPHysics—development of a free-surface fluid solver—Part 2: Efficiency and test cases." Computers & Geosciences 48 (2012): 300-307.
- It was decided that only well validated and peer reviewed developments will be included in the solver – reproducibility was, and is, paramount


Core developers:

• Why wave mechanics? Please check names and usual suspects!

• A number of releases and variants followed:

gen 1 ½

- The following question became obvious:
 - What if we can take our discretisation to 5 million particles possibly 6 million?
 - In less than a day (or week) of compute time?
 - GPU acceleration was becoming a possibility around late 2006+
 - DualSPHysics was born:

Main developer (coder) (CUDA and OpenMP)

Dr José M. Domínguez - Universidade de Vigo, Spain (PhD project)

- Language: Fortran to C++
- First level of parallelisation: OpenMP
- Second level of parallelisation: NVIDIA CUDA
- Code released in 2011

Supervisors

The University of Manchester

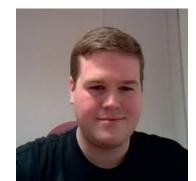
Dr Athanasios Mokos

Dr George Fourtakas

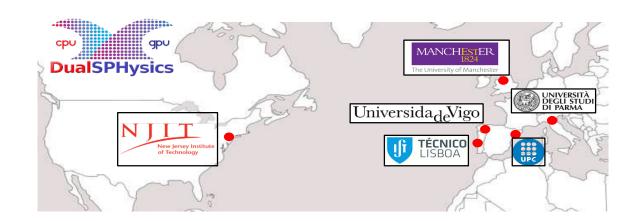
Dr Anxo Barreiro

Dr Ricardo Canelas

• Third gen (*coders*)

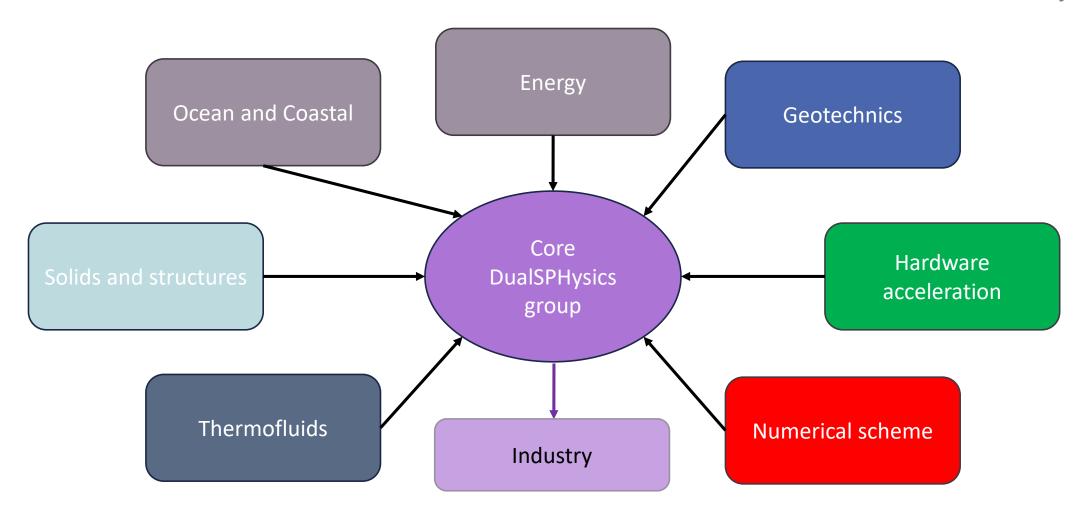

Dr Stephen Longshaw

Dr Angelo Tafuni


https://dual.sphysics.org/developers/ (<- all listed here)</pre>

DualSPHysics consortium

- Academic institutions in Europe and US
 - University of Vigo, Spain
 - University of Manchester, UK
 - University of Parma, Italy
 - University Polytechnic Catalunya, Spain
 - New Jersey institute of Tech., USA



Institutions are currently the Project Leaders

DualSPHysics consortium

DualSPHysics consortium

- Each leading institution has specific expertise that shares with the core group*
 - University of Vigo

Hardware acceleration, coupling, coastal-ocean, renewable energy

University of Manchester

Numerics, model development, thermofluids, structures, geotechnics, HPC

University of Parma

Numerics, model development, SWE, HPC

UPC

Wave mechanics numerical and experimental, coastal-ocean, validation

NJIT

Numerics, model development, thermofluids, HPC

^{*}List not extensive and just an example

Numerical and computational framework

Numerical formulation

Weakly compressible SPH, fully explicit

$$\left\langle \frac{\mathrm{d} \rho}{\mathrm{d} t} \right\rangle = \rho_i \sum_{i} \frac{m_j}{\rho_j} m_j (\mathbf{u}_i - \mathbf{u}_j) \cdot \nabla_i W_{ij} + h c_0 \mathcal{D}_a$$

$$\left\langle \frac{\mathrm{d}\,\mathbf{u}}{\mathrm{d}\,t} \right\rangle = -\sum_{j} m_{j} \left(\frac{P_{i} + P_{j}}{\rho_{i}\rho_{j}} \right) \nabla_{i} W_{ij} + \left\langle \frac{1}{\rho} \nabla \cdot \tau \right\rangle + \frac{hc_{0} \mathbf{U}_{a}}{hc_{0} \mathbf{U}_{a}}$$

$$\frac{\mathrm{d}\,m_i}{\mathrm{d}\,t}=0\qquad p=f(\rho,\gamma,c_0)$$

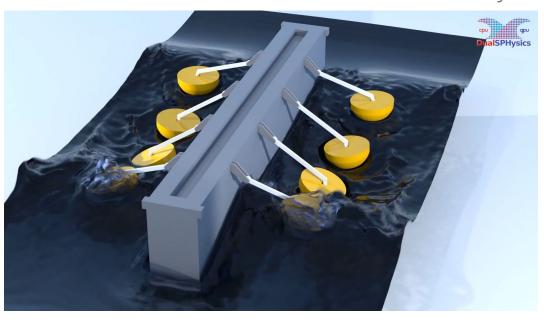
Using a
$$c_0$$
 of: $c_0 = 10u_{\text{max}} = 10\sqrt{gh}$

Conservation of Mass

Conservation of Momentum

Plus numerical models: see

https://github.com/DualSPHysics/


<u>DualSPHysics/wiki</u>

Numerical and computational framework

Main physical models:

- Single and multiphase solvers
- FSI with flexible structures
- DEM solver incorporated
- Three rigid interaction algorithms
- Advanced wave mechanics
- Coupling with external libraries
 - Chrono project, MoorDyn, SWASH, etc.

Canelas et al., (2018)

Development is driven by Research funding

- Base code and single-phase solver
 - Programa de Consolidación e Estructuración de Unidades de Investigación Competitivas, Spain
 - European Regional Development Fund & Ministerio de Economía y Competitividad, Spain
 - EPSRC & Research Councils, UK
- Multiphase (gas-liquid)
 - EPSRC & Research Councils, UK
- Coupling with Chrono project
 - EU and Portuguese Foundation for Science (FCT), Portugal
 - Water JPI, Portugal
 - European Regional Development Fund & Ministerio de Economía y Competitividad, Spain

Development is driven by Research funding

- Coupling with MoorDyn library
 - Programa de Consolidación e Estructuración de Unidades de Investigación Competitivas, Spain
 - European Regional Development Fund & Ministerio de Economía y Competitividad, Spain
 - European MaRINET2 EsfLOWC project (EU H2020)
- DEM solver
 - Portuguese Foundation for Science and Technology (FCT), Portugal
 - Programa de Consolidación e Estructuración de Unidades de Investigación Competitivas, Spain
 - European Regional Development Fund
- Turbulence (LES) and variable resolution
 - National Science Foundation, USA

Development is driven by Research funding

- Surface tension and thermal effects
 - Joint CSC & University of Manchester scholarship, UK & China
- Geotechnics
 - CSC scholarship, China
- Diffusion terms
 - EPSRC, UK
 - Ministry of Education, Universities and Research, Italy
 - Programa de Consolidación e Estructuración de Unidades de Investigación Competitivas, Spain
 - European Regional Development Fund & Ministerio de Economía y Competitividad, Spain
- Wave mechanics
 - Marie Curie (Eu) & Ramón y Cajal (Spain)

Industry is involved when solver is established

- Non-Newtonian multiphase solver
 - Industrial CASE EPSRC & National Nuclear Laboratory, UK
- Thermal Flows and mixing
 - Industrial CASE EPSRC & National Nuclear Laboratory, UK
- mDBC
 - Unilever and EPSRC, University of Manchester, UK
 - Ministry of Education, Universities and Research, Italy
 - Programa de Consolidación e Estructuración de Unidades de Investigación Competitivas, Spain
 - European Regional Development Fund & Ministerio de Economía y Competitividad, Spain
- Variable resolution with nested domains
 - General Motors, USA

Industry* uptake and use of the solver

- Motorsport companies
 - Fuel tanks
- Automotive
 - Gearbox
 - Jets
- Governmental bodies (consultancy)
 - Coastal protection
- Clean energy
 - Wave energy converters

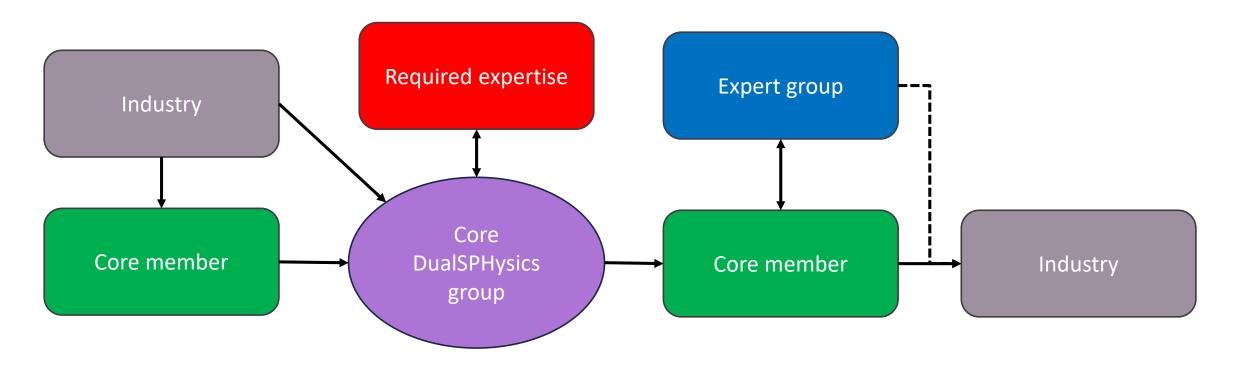
Industrial interest:

NASA JSC, BAE Systems, Volkswagen AG, GM, AIRBUS, BAE, EDF, Steyr, Forum NOKIA, NVIDIA, AECOM, HDR Engineering, ABPmer, DLR, CFD-NUMERICS, BMT Group, Oak Ridge National Laboratory, Rainpower Norway, Shell Company, ABB, ARUP, FEMTO Engineering, National Nuclear Laboratory, ALTAIR, Kitware (Paraview), and many others...

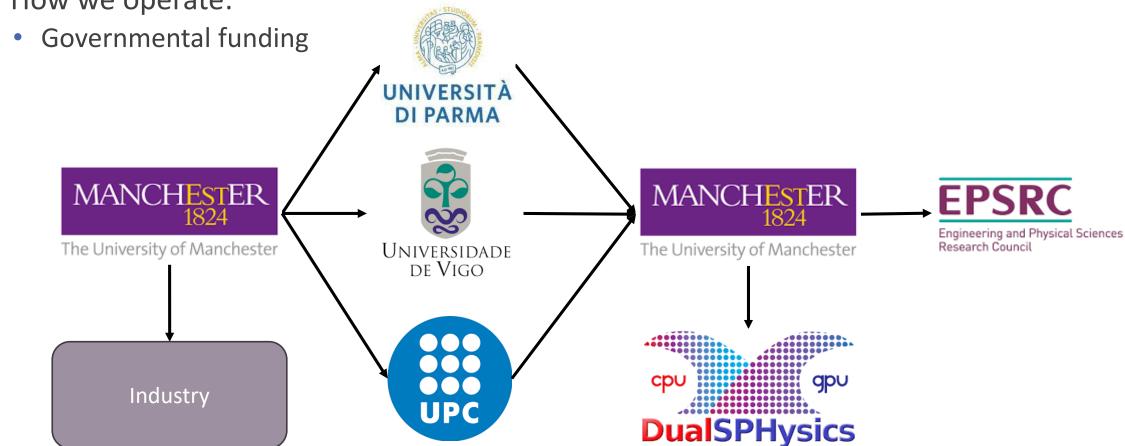
- Software industry
 - Consultancy

*Company names are "protected"

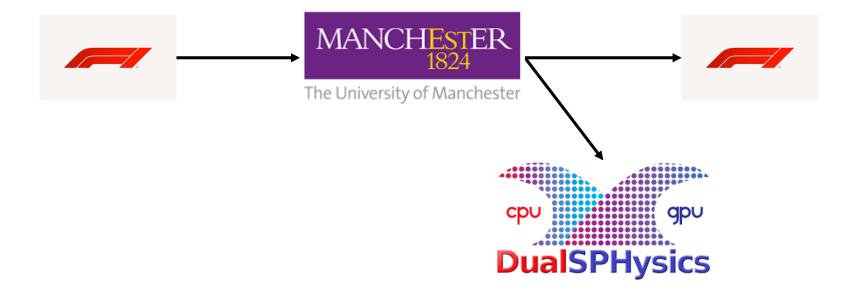
DualSPHysics philosophy and interaction with industry


- Academic collaboration
 - Academic & Industrial solver
 - Developments are initially of academic interest
 - Applicable to industrial applications
- Open-source freely available code
 - Peer-reviewed
 - Validated
 - Reproduceable results
 - LGPL
- Our interest is scientific and not monetary

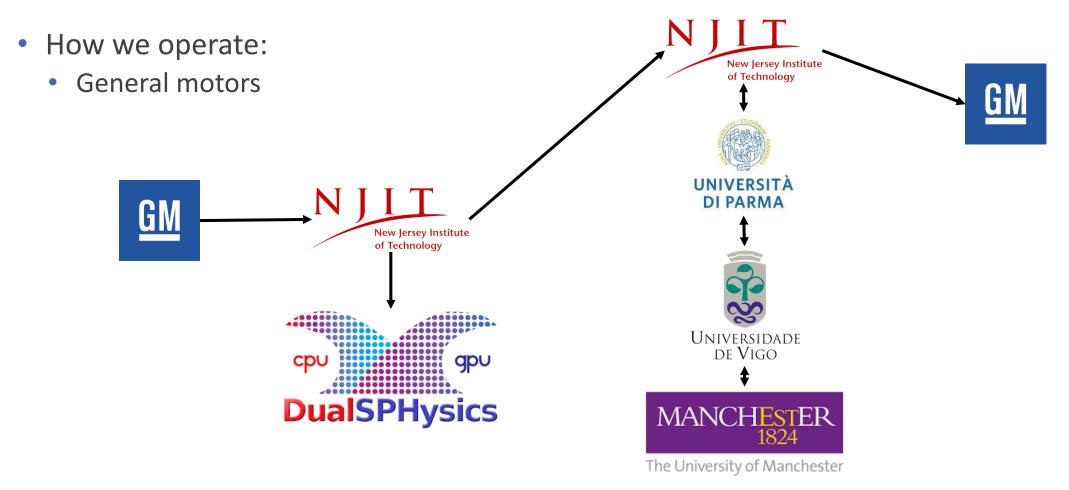
- Avenues for industrial collaboration
 - PhD funding
 - CASE award (part-funded with contribution form Research councils)
 - Part-funded from industry supplemented by academic institution
 - Part-funded from industry supplemented from competitive scholarships
 - Full funds provided by industry
 - Research associate (Postdoc)
 - Impact accelerator awards
 - SMB governmental awards
 - Research council proposals with industrial support
 - Consultancy



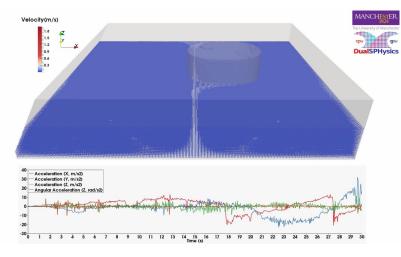
How we operate:

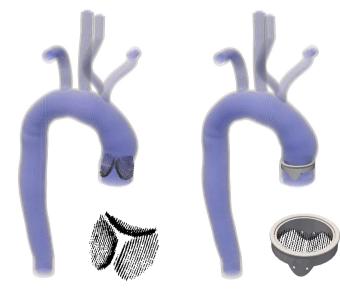


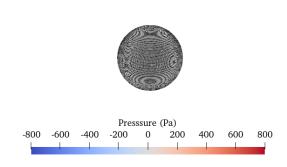
How we operate:



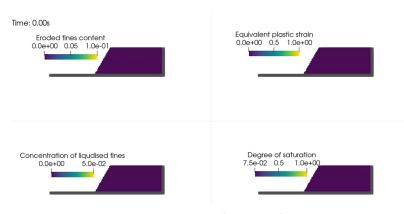
- How we operate:
 - Formula 1 team



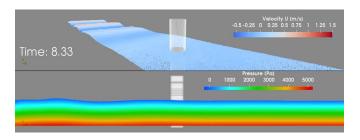

The University of Manchester

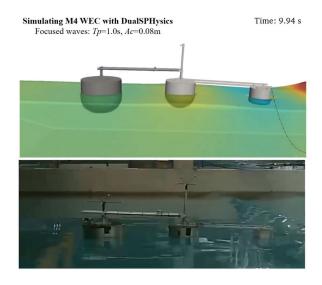

Longshaw & Rogers (2015)

Industrial use examples



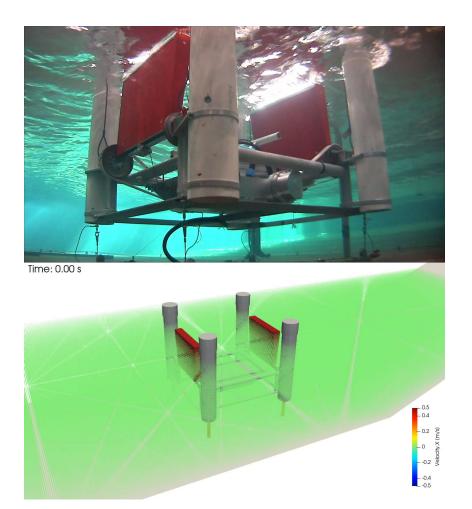
Laha et al., (2024)


Cen et al., (2023)

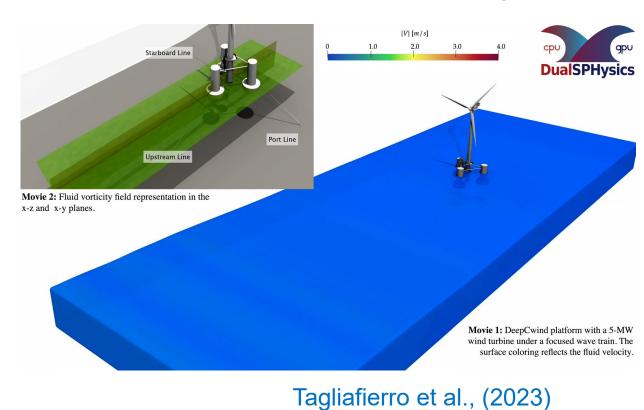

Feng et al., (2023)

The University of Manchester

Chow et al., 2019



Carpintero et al., (2020)


Industrial use examples

The University of Manchester

Tagliafierro et al., (2020)

Industrial developments

The University of Manchester

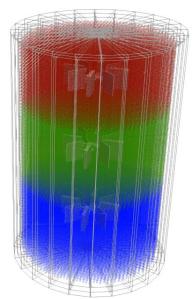
National Nuclear laboratory, UK

Multiphase non-Newtonian solver

CaseImpellersNN

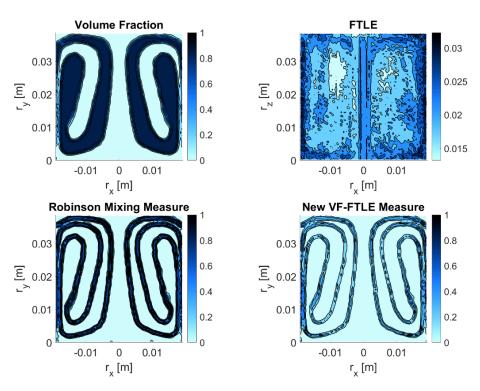
Phase 1: Density=1000, Viscosity=0.001, Tau yield=0.0021, HBP n=1.0, HBP m=1.0

Phase 2: Density=1000, Viscosity=0.010, Tau_yield=0.0210, HBP_n=1.0, HBP_m=10.0


Phase 3: Density=1000, Viscosity=0.100, Tau yield=0.2100, HBP n=1.0, HBP m=100.0

ONLY PARTICLES WITH VELOCITY > 0.04 m/s

Particles: 153,810 Physical time: 6 s


Runtime (GTX 2080): 158.8 min

Time: 0.00 s

Mixture measures, thermal BCs & multi-component mixtures

Mixing measures at 120 s for three-dimensional two-component cylindrical tank.

Reece et al., (2024)

Future research

Future research in Numerics

Industry requires

Accuracy

A 2nd order scheme is sufficient

Robustness

Proprietary solvers provide an answer which is not always the correct one

New diffusion terms (see keynote 1)

- Density diffusion
- Divergence cleaning

Advanced discretisation

- Riemann solvers
- ALE (type) schemes
- h-p refinement

Future research

Future research in Physics

Industry requires numerical models

Model physics sufficiently

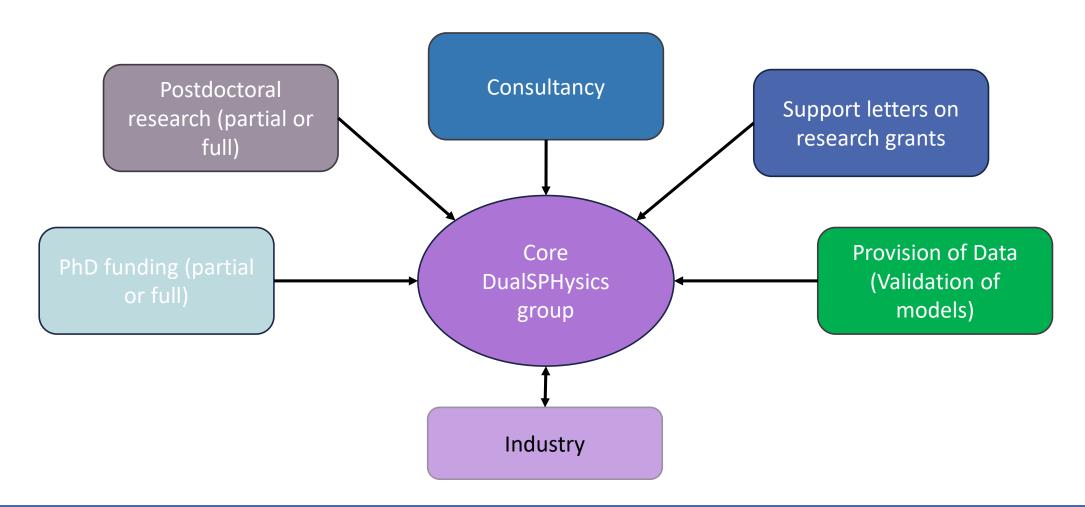
Resolve only what is necessary, model everything else (DNS is very expensive)

Robustness

Provide and answer (See k- ε and k- ω (SST) in StarCCM+ tunned for Aero applications)

Turbulence

- RANS
- LES
- Lagrangian turbulence


Advanced discretisation

- High density ratio multiphase solvers
- Thermal flows
- Surface tension
- Coupling to other solvers

Industrial collaboration

• Which options are available to collaborate with DualSPHysics:

Summary

- The origins of the DualSPHysics solver is deeply ingrained to academia
- Hardware acceleration and advances in SPH allowed the solver to
 - Tackle industrial applications
 - Challenge established methodologies
- Academic and Industrial funding drives the research
- Industry has been fundamental in the development of the solver
- Currently, industry dictates the direction of our research
- There are many paths for industrial involvement

Speak to us, we need to know!