

A fluid-structure interaction model for freesurface flows and flexible structures

JOSEPH O'CONNOR

Motivation

Method

XML Examples

More Examples

Additional Information

Motivation

Method

XML Examples

More Examples

Additional Information

Motivation for Flexible FSI

- Many real-world problems are governed by flexible fluid-structure interactions
 - Vegetation
 - Biological flows
 - Coastal infrastructure
 - Many more...
- Coupling with Project Chrono provides an extensive set of features to solve a vast range of multiphysics problems
- However, we would also like an approach that is fully contained within DualSPHysics
 - Unified framework
 - Can run entirely on GPU
 - Natural boundary conditions
 - Robust fluid-structure coupling

Overview

Motivation

Method

XML Examples

More Examples

Additional Information

Structural Modelling with SPH

- Opted for an SPH-based approach to model the structure:
 - Easier integration within DualSPHysics
 - Monolithic / unified schemes provide enhanced stability over partitioned approaches
 - Better suited to modelling additional complex processes (e.g. fracture)
- Momentum equation for a continuum:

$$\frac{\mathrm{D}\mathbf{u}}{\mathrm{D}t} = \frac{1}{\rho}\nabla\cdot\boldsymbol{\sigma} + \mathbf{g}$$

- Can split stress tensor into an isotropic and deviatoric part and solve just like a fluid (with different state equation, constitutive model and Jaumann stress rate)
- However, there are three problems with this approach: 1) tensile instability; 2) linear inconsistency; 3) rank deficiency / hourglassing

Tensile Instability

- Solution is to adopt a Total Lagrangian approach (Belytschko et al. 2000, Rabczuk et al. 2004)
- Reformulate momentum equation with respect to a reference (initial) configuration:

$$\frac{\mathrm{D}\mathbf{u}}{\mathrm{D}t} = \frac{1}{\rho_0} \nabla_0 \cdot \mathbf{P} + \mathbf{g}$$

- Cauchy stress tensor is replaced with nominal (first Piola-Kirchoff) stress tensor and standard SPH discretisation is applied
- Everything is measured with respect to initial configuration:
 - No need to recompute neighbouring particles
 - No need to recompute kernel derivatives
 - No need to compute continuity equation for the structure

Linear Inconsistency

- Boundaries are a big problem for structural dynamics with SPH due to incomplete support
- Need to reproduce gradient of a linear field (Randles & Libersky 1996)
- Introduce a kernel correction:

$$\tilde{\nabla}_a W_{ab} = \mathbf{L}_a^{-1} \nabla_a W_{ab}$$

$$\mathbf{L}_a = \sum_b \frac{m_b}{\rho_b} \mathbf{x}_{ba} \otimes \nabla_a W_{ab}$$

Rank Deficiency / Hourglassing

- Rank-deficiency leads to zero-energy modes which are not suppressed and eventually become unstable (similar to reduced order elements in FEM)
- Options for suppressing these modes are:
 - Stress integration points
 - Reformulate into mixed-base set
 - Corrective force
- The corrective force approach penalises any deformation which is not described exactly by the deformation gradient (Ganzenmuller 2015)
- Corrective force approach is easy to implement and efficient however it modifies the effective stiffness of the flexible structure and introduces a tuning parameter

Discretisation and Material Model

• Finally, the discrete form of the momentum equation for the structure is:

$$\frac{\mathrm{D}\mathbf{u}_a}{\mathrm{D}t} = \sum_b m_{0b} \left(\frac{\mathbf{P}_a \mathbf{L}_{0a}^{-1}}{\rho_{0a}^2} + \frac{\mathbf{P}_b \mathbf{L}_{0b}^{-1}}{\rho_{0b}^2} \right) \cdot \nabla_{0a} W_{0ab} + \frac{\mathbf{f}_a^{HG}}{m_{0a}} + \mathbf{g}$$

• The first Piola-Kirchhoff stress is related to the second Piola-Kirchhoff stress:

 $\mathbf{P}=\mathbf{F}\mathbf{S}$

• The second Piola-Kirchhoff stress is related to the Green-Lagrange strain via the Saint Venant-Kirchhoff constitutive model:

$$\mathbf{S} = \lambda \mathrm{tr}(\mathbf{E})\mathbf{I} + 2\mu\mathbf{E}$$

• Where the Green-Lagrange strain and deformation gradient are given by:

$$\mathbf{E} = \frac{1}{2} \left(\mathbf{F}^T \mathbf{F} - \mathbf{I} \right) \qquad \qquad \mathbf{F} = \frac{\mathrm{d}\mathbf{x}}{\mathrm{d}\mathbf{x}_0}$$

Dynamic Boundary Condition

- The dynamic boundary condition is the basic pre-existing boundary condition within DualSPHysics
- Density of boundary particles is evolved via the continuity equation as normal
- Momentum equation is not computed for boundary particles

Fluid-Structure Coupling

- The fluid-structure coupling is handled via the same approach (dynamic boundary condition)
- Fluid see structural particles as normal boundary particles (with a velocity)
- Structure sees fluid particles in the same way that a boundary particle sees the fluid
- Momentum equation is integrated for structure particles but not for boundary
- No need to know geometric information about interface (e.g. surface normals)

Fluid-Structure Coupling

- Total force on a particle is sum of contributions from neighbouring fluid, structure and boundary particles
- Note that the last two terms in the structure momentum equation use the Total Lagrangian form

Fluid Particle

$$\frac{\mathbf{D}\mathbf{u}_{a}}{\mathbf{D}t} = -\sum_{b} m_{b} \left(\frac{p_{a} + p_{b}}{\rho_{a}\rho_{b}}\right) \nabla_{a} W_{ab} - \sum_{b} m_{b} \left(\frac{p_{a} + p_{b}}{\rho_{a}\rho_{b}}\right) \nabla_{a} W_{ab} - \sum_{b} m_{b} \left(\frac{p_{a} + p_{b}}{\rho_{a}\rho_{b}}\right) \nabla_{a} W_{ab}$$

Structure Particle

$$\frac{\mathbf{D}\mathbf{u}_{a}}{\mathbf{D}t} = -\sum_{b} m_{b} \left(\frac{p_{a} + p_{b}}{\rho_{a}\rho_{b}}\right) \nabla_{a} W_{ab} + \sum_{b} m_{0b} \left(\frac{\mathbf{P}_{a} \mathbf{L}_{0a}^{-1}}{\rho_{0a}^{2}} + \frac{\mathbf{P}_{b} \mathbf{L}_{0b}^{-1}}{\rho_{0b}^{2}}\right) \cdot \nabla_{0a} W_{0ab} + \sum_{b} m_{0b} \left(\frac{\mathbf{P}_{a} \mathbf{L}_{0a}^{-1}}{\rho_{0a}^{2}} + \frac{\mathbf{P}_{b} \mathbf{L}_{0b}^{-1}}{\rho_{0b}^{2}}\right) \cdot \nabla_{0a} W_{0ab}$$

Overview

Motivation

Method

XML Examples

More Examples

Additional Information

Case Setup in XML

• There are three main steps to setting up a case involving flexible fluid-structure interaction

Example 1 (Turek & Hron CSM3)

Geometry Definition

```
<mainlist>

<setdrawmode mode="full" />

<!--Clamp-->

<setmkbound mk="0" />

<drawsphere radius="0.05">

<point x="0.2" y="0.0" z="0.2" />

</drawsphere>

<!--Flexible Structure-->

<setmkbound mk="1" />

<drawbox>

<boxfill>solid</boxfill>

<point x="0.2" y="-0.01" z="0.19" />

<size x="0.4" y="0.02" z="0.02" />

</drawbox>

</mainlist>
```

- Define the geometry of the clamp first
- Embed the flexible structure within the clamp

Tag as Moveable Object

```
<motion>
<objreal ref="1">
<begin mov="1" start="0" />
<mvnull id="1" />
</objreal>
</motion>
```

- Tag flexible structure as moveable object
- The **mvnull** label informs DualSPHysics the motion will be calculated during runtime

Example 1 (Turek & Hron CSM3)

Flexible Structure Definition

- mkbound and mkclamp are the mkbound numbers for the flexible structure and clamp
- density is mass density, youngmod is Young's modulus, and poissratio is the Poisson ratio
- constitmodel is the constitutive model (plane strain, plane stress, or St. Venant-Kirchhoff)
- hgfactor is the hourglass correction factor to use in the zero-energy mode suppression scheme

Example 1 (Turek & Hron CSM3)

Example 2 (2D Dambreak)

Geometry Definition

Example 2 (2D Dambreak)

Tag as Moveable Object

Flexible Structure Definition

Example 2 (2D Dambreak)

CaseDambreak2D_FSI

Particles: 27,946 Physical time: 1 s Runtime (RTX 3080 Ti): 6.2 min

Time: 0.00 s

Overview

Motivation

Method

XML Examples

More Examples

Additional Information

3D Dambreak

Note that the example XML is slightly modified with respect to the validation case to enable a faster run time for the example

Turek & Hron FSI2

• With inlet/outlet and shifting

Rolling Tank (Deep)

• With moving clamp

Rolling Tank (Hanging)

• With moving clamp

Overview

Motivation

Method

XML Examples

More Examples

Additional Information

Constitutive Model

- Plane strain (2D) models the third (out-of-plane) dimension by assuming zero strain in the out-of-plane direction (suitable for problems that are very thick in the out-of-plane direction)
- Plane stress (2D) models the third (out-of-plane) dimension by assuming zero stress in the out-of-plane direction (suitable for problems that are very thin in the out-of-plane direction)
- The hyperelastic St. Venant-Kirchhoff constitutive model is the only available 3D model and is an extension of the linear elastic model to the geometrically nonlinear regime

Hourglass Suppression Scheme

- Hourglass / zero-energy mode instability manifests as unphysical particle displacements
- The hourglass suppression scheme penalises any deformation which is not described exactly by the deformation gradient
- However, this modifies the effective stiffness of the flexible structure
- Therefore, it is recommended to first try without the correction (hgfactor = 0)
- If the instability appears, a value of 0.1 typically mitigates this instability with negligible impact on the effective stiffness

More Information

Combined Options

- The flexible FSI does not currently work with restart or symmetric/periodic BCs
- It does work with mDBC but not on the flexible structure itself

Particle Resolution

- Generally, a minimum of four particles across the structure thickness is required
- Therefore, very thin structures will require a lot of particles and will be very expensive

Timestep Size

- There is an additional timestep constraint for the flexible structure (based on sound speed)
- High Young's modulus combined with low mass density will lead to smaller timestep

Reference & Acknowledgements

For more details, please see:

O'Connor, J. and Rogers, B.D. A fluid-structure interaction model for free-surface flows and flexible structures using smoothed particle hydrodynamics on a GPU. Journal of Fluids and Structures, 104 (103312). 2021.

Thanks To:

Prof. Benedict Rogers University of Manchester

Dr Alejandro Crespo, Dr José Domínguez, Iván Martínez Estévez Universidade de Vigo