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surface flows and flexible structures
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Motivation for Flexible FSI
• Many real-world problems are governed by flexible fluid-structure interactions

- Vegetation
- Biological flows
- Coastal infrastructure
- Many more…

• Coupling with Project Chrono provides an extensive set of features to solve a vast range of 
multiphysics problems
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• However, we would also like an 
approach that is fully contained 
within DualSPHysics

- Unified framework
- Can run entirely on GPU
- Natural boundary conditions
- Robust fluid-structure coupling
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Structural Modelling with SPH
• Opted for an SPH-based approach to model the structure:

- Easier integration within DualSPHysics
- Monolithic / unified schemes provide enhanced stability over partitioned approaches
- Better suited to modelling additional complex processes (e.g. fracture)

• Momentum equation for a continuum:

• Can split stress tensor into an isotropic and deviatoric part and solve just like a fluid (with 
different state equation, constitutive model and Jaumann stress rate)

• However, there are three problems with this approach: 1) tensile instability; 2) linear 
inconsistency; 3) rank deficiency / hourglassing
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Tensile Instability
• Solution is to adopt a Total Lagrangian approach (Belytschko et al. 2000, Rabczuk et al. 2004)

• Reformulate momentum equation with respect to a reference (initial) configuration:

• Cauchy stress tensor is replaced with nominal (first Piola-Kirchoff) stress tensor and standard 
SPH discretisation is applied

• Everything is measured with respect to initial configuration:
- No need to recompute neighbouring particles
- No need to recompute kernel derivatives
- No need to compute continuity equation for the structure
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Linear Inconsistency
• Boundaries are a big problem for structural dynamics with SPH due to incomplete support

• Need to reproduce gradient of a linear field (Randles & Libersky 1996)

• Introduce a kernel correction:
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Rank Deficiency / Hourglassing
• Rank-deficiency leads to zero-energy modes which are not suppressed and eventually become 

unstable (similar to reduced order elements in FEM)

• Options for suppressing these modes are:
- Stress integration points
- Reformulate into mixed-base set
- Corrective force
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• The corrective force approach penalises any 
deformation which is not described exactly by 
the deformation gradient (Ganzenmuller 2015)

• Corrective force approach is easy to implement and efficient however it modifies the effective 
stiffness of the flexible structure and introduces a tuning parameter



Discretisation and Material Model
• Finally, the discrete form of the momentum equation for the structure is:

• The first Piola-Kirchhoff stress is related to the second Piola-Kirchhoff stress:

• The second Piola-Kirchhoff stress is related to the Green-Lagrange strain via the Saint Venant-
Kirchhoff constitutive model:

• Where the Green-Lagrange strain and deformation gradient are given by:
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Dynamic Boundary Condition
• The dynamic boundary condition is the basic pre-existing boundary condition within 

DualSPHysics

• Density of boundary particles is evolved via the continuity equation as normal

• Momentum equation is not computed for boundary particles
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Fluid Boundary



Fluid-Structure Coupling
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• The fluid-structure coupling is handled via the 
same approach (dynamic boundary condition)

• Fluid see structural particles as normal 
boundary particles (with a velocity)

• Structure sees fluid particles in the same way 
that a boundary particle sees the fluid

• Momentum equation is integrated for 
structure particles but not for boundary

• No need to know geometric information 
about interface (e.g. surface normals)



Fluid-Structure Coupling
• Total force on a particle is sum of contributions from 

neighbouring fluid, structure and boundary particles

• Note that the last two terms in the structure 
momentum equation use the Total Lagrangian form
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Fluid Particle

Structure Particle
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Case Setup in XML
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• There are three main steps to setting up a case involving flexible fluid-structure interaction

Geometry definition

Tag as moveable object

Flexible structure definition



• Define the geometry of the clamp first

• Embed the flexible structure within the clamp

Example 1 (Turek & Hron CSM3)
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Geometry Definition

Tag as Moveable Object

mkbound 1

mkbound 0

• Tag flexible structure as moveable object

• The mvnull label informs DualSPHysics the 
motion will be calculated during runtime



Example 1 (Turek & Hron CSM3)
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Flexible Structure Definition

• mkbound and mkclamp are the mkbound numbers for the flexible structure and clamp

• density is mass density, youngmod is Young’s modulus, and poissratio is the Poisson ratio

• constitmodel is the constitutive model (plane strain, plane stress, or St. Venant-Kirchhoff)

• hgfactor is the hourglass correction factor to use in the zero-energy mode suppression scheme
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Example 1 (Turek & Hron CSM3)
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Example 2 (2D Dambreak)
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Geometry Definition

mkbound 1

mkbound 0

mkfluid 0

mkbound 3 mkbound 3

mkbound 2



Example 2 (2D Dambreak)
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Flexible Structure Definition

Tag as Moveable Object

Uses realistic gate motion



Example 2 (2D Dambreak)
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3D Dambreak

23

0 0.2 0.4 0.6 0.8 1
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0

0.05
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Note that the example XML is slightly
modified with respect to the validation case
to enable a faster run time for the example



Turek & Hron FSI2
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• With inlet/outlet and shifting



Rolling Tank (Deep)
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Rolling Tank (Hanging)
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Constitutive Model
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• Plane strain (2D) models the third (out-of-plane) dimension by assuming zero strain in the out-
of-plane direction (suitable for problems that are very thick in the out-of-plane direction)

• Plane stress (2D) models the third (out-of-plane) dimension by assuming zero stress in the out-
of-plane direction (suitable for problems that are very thin in the out-of-plane direction)

• The hyperelastic St. Venant-Kirchhoff constitutive model is the only available 3D model and is 
an extension of the linear elastic model to the geometrically nonlinear regime



Hourglass Suppression Scheme
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• Hourglass / zero-energy mode instability 
manifests as unphysical particle displacements

• The hourglass suppression scheme penalises 
any deformation which is not described 
exactly by the deformation gradient

• However, this modifies the effective stiffness 
of the flexible structure

• Therefore, it is recommended to first try 
without the correction (hgfactor = 0)

• If the instability appears, a value of 0.1 
typically mitigates this instability with 
negligible impact on the effective stiffness



More Information
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• The flexible FSI does not currently work 
with restart or symmetric/periodic BCs

• It does work with mDBC – but not on 
the flexible structure itself

Combined Options

• Generally, a minimum of four particles across the structure thickness is required

• Therefore, very thin structures will require a lot of particles and will be very expensive

Particle Resolution

• There is an additional timestep constraint for the flexible structure (based on sound speed)

• High Young’s modulus combined with low mass density will lead to smaller timestep

Timestep Size

mDBC DBC
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