

IST, Lisbon, 22-24 October 2018 4th DualSPHysics Users Workshop

Application of DualSPHysics in assessment and design of a wave absorbing caisson

Bonaventura TAGLIAFIERRO, José DOMÍNGUEZ, José GONZÁLEZ-CAO, Alejandro CRESPO, Moncho GÓMEZ-GESTEIRA, **Universidade de Vigo, SPAIN**

Corrado ALTOMARE, Ghent University, BELGIUM

José SANDE, Raquel COSTAS, Enrique PEÑA, Universidade da Coruña, SPAIN

OUTLINE

1- NUMANTIA PROJECT. HARBOUR IN PUNTA LANGOSTEIRA

2- NUMERICAL MODELLING OF THE ANTI-REFLECTIVE CAISSON

3- SPH MODELLING WITH DUALSPHYSICS. MULTIGPU

4- RESULTS WITH DUALSPHYSICS: VALIDATION AND ANALYSIS

5- CONCLUSIONS

1 - NUMANTIA Project

Universida_{de}Vigo

OBJECTIVE: Numerical design of low-wave-reflective quay wall **caissons** in the new harbour of Punta Langosteira.

Punta Langosteira is in A Coruña, Northwest of SPAIN

1 - Harbour in Punta Langosteira

• Main function of harbours is to provide sheltered waters for the moorage of ships.

• Quay walls are usually built with vertical paraments, but they almost entirely reflect the incident wave.

• A frequent solution is to equippe the parament with a casson-type wave-energy absorbing.

OUTLINE

1- NUMANTIA PROJECT. HARBOUR IN PUNTA LANGOSTEIRA

2- NUMERICAL MODELLING OF THE ANTI-REFLECTIVE CAISSON

3- SPH MODELLING WITH DUALSPHYSICS. MULTIGPU

4- RESULTS WITH DUALSPHYSICS: VALIDATION AND ANALYSIS

5- CONCLUSIONS

- OBJECTIVE: Performance of the CAISSON
- PARAMETER: WAVE REFLECTION COEFFICIENT (at 1 * *L*)

SCHEME OF THE WAVE FLUME

Experimental campaign at CITEEC (Universidad da Coruña) with a prototype of the actual caisson and real wave conditions

Experimental campaign at CITEEC (Universidad da Coruña) with a prototype of the actual CAISSON

Experimental campaign at CITEEC (Universidad da Coruña) with a prototype of the actual CAISSON

3D MODEL OF THE CAISSON

Experimental campaign at CITEEC (Universidad da Coruña) with a prototype of the actual CAISSON

3D MODEL OF THE CAISSON

The problem under study is ideal to be solved using a mesh-based model For NUMANTIA project, OpenFOAM is used for numerical modelling

- No moving boundary condition
- Low Reynolds number
- No use of **Turbulence model**
- Geometrical multi-scale

The problem under study is ideal to be solved using a mesh-based model For NUMANTIA project, OpenFOAM is used for numerical modelling

wave generation

3D VIEW OF THE MESH

time = 3.45 s

The problem under study is ideal to be solved using a mesh-based model For NUMANTIA project, OpenFOAM is used for numerical modelling

U 0,75 0,40 0,17 0,11 0,10

3D ANIMATION WITH OPENFOAM

OUTLINE

1- NUMANTIA PROJECT. HARBOUR IN PUNTA LANGOSTEIRA

2- NUMERICAL MODELLING OF THE ANTI-REFLECTIVE CAISSON

3- SPH MODELLING WITH DUALSPHYSICS

4- RESULTS WITH DUALSPHYSICS: VALIDATION AND ANALYSIS

5- CONCLUSIONS

ULTIMATE PURPOSE: design of new, efficient internal geometries of the CAISSON

How many particles can we simulate?

gpu

DualSPHysics

3D MODEL OF THE CAISSON

How many particles can we simulate?

Wave conditions (Regular waves)			
H [m]	T [s]	d [m]	L [m]
0.025 – 0.05	1.5 – 2.8	1.36, 1.51	3.5 - 10

Following Altomare et al., 2015 it is recommended that $\frac{H}{dp} > 10$

Hence, we should use $dp \approx 0.004 m$

The therefore number of particles will be

$$N_p = \frac{\text{length} * \text{depth} * \text{width}}{dp^3} \approx 550,000,000$$

Available implementation in DualSPHysics to reduce the domain size:

- Inlet/Outlet (not fully tested to absorb waves)
- Coupling with other model (e.g. SWASH)
- Relaxation Zone (Altomare et al., 2018)
- Piston with AWAS (wave conditions at a certain point)

Available implementation in DualSPHysics to optimize the number of particles:

 Combining different *dp* using variable resolution: Vacondio et al., SPHERIC 2015: Not efficient Leonardi et al., SPHERIC 2018: Only for 2D cases

Hardware acceleration with DualSPHysics:

- SingleGPU: Limited by memory space ($\approx 30M$)
- MultiGPU of 2013 (MPI version): NO double precision

How many particles can we simulate?

- PISTON with AWAS at 2L from the caisson
- Execution with MultiGPU 2013 (MPI version) $N_p \approx 200,000,000$

How many particles can we simulate?

WE WILL CREATE A REDUCED NUMERICAL DOMAIN FOR THIS WORK:

- T is reduced, L is reduced, domain length is reduced
- Width of the tank is reduced
- Depth is reduced (1/3)
- With same dp, the total number of particles is 12M
- There is no issue with precision now

THAT NEW REDUCED DOMAIN CAN BE SIMULATED WITH:

- One GPU (memory space enough)
- MultiGPU 2013 (only single precision)

WE WILL VALIDATE SPH RESULTS vs OPENFOAM

OUTLINE

1- NUMANTIA PROJECT. HARBOUR IN PUNTA LANGOSTEIRA

2- NUMERICAL MODELLING OF THE ANTI-REFLECTIVE CAISSON

3- SPH MODELLING WITH DUALSPHYSICS. MULTIGPU

4- RESULTS WITH DUALSPHYSICS: VALIDATION AND ANALYSIS

5- CONCLUSIONS

VALIDATION Wave condition: T = 1.00m, H = 0.05m, d = 1.36m

The validation has been carried out by means of the WAVE REFLECTION COEFFICIENT

$$K_r = \frac{H_r}{H_i}$$

HEALY's method, for regular waves, leads to

$$K_{r} = \frac{H_{antinode} - H_{node}}{H_{antinode} + H_{node}}$$

VALIDATION Wave condition: T = 1.00m, H = 0.05m, d = 1.36m

REFLECTION COEFFICIENT of the caisson is computed either for **OPENFOAM** and **SPH** results

ANALYSIS Wave condition: T = 1.00m, H = 0.05m, d = 1.36m**ANIMATION** dp = 0.0035 m; 24 M particles *Runtime* = 4.70 h/s8 x GeForce GTX TITAN time = 4.15 sDU **DualSPHysics** Vel X

-0.47 -0.40 -0.30 -0.20 -0.10 0.00 0.10 0.20 0.30 0.40 0.50 0.62

Wave condition: T = 1.00m, H = 0.05m, d = 1.36m

ANIMATION dp = 0.0035 m

time = 4.25 s

ANALYSIS

FREE SURFACE AND VORTICITY (LATERAL VIEW)

time = 3.53 s Wave condition: T = 1.00m, H = 0.05m, d = 1.36m

FREE SURFACE AND VORTICITY (TOP VIEW)

4 - SPH modelling with DualSPHysics

FLOW RATES WITH DUALSPHYSICS

5

OUTLINE

1- NUMANTIA PROJECT. HARBOUR IN PUNTA LANGOSTEIRA

2- NUMERICAL MODELLING OF THE ANTI-REFLECTIVE CAISSON

3- SPH MODELLING WITH DUALSPHYSICS. MULTIGPU

4- RESULTS WITH DUALSPHYSICS: VALIDATION AND ANALYSIS

5- CONCLUSIONS

5 - CONCLUSIONS

GOOD NEWS

• The problem could have been solved with SPH method.

BAD NEWS

• It came up against the model limits.

We need now to improve the code:

- Variable resolution (optimization)
- MultiGPU

Thanks for your attention

