DualSPHysics simulation of a vertical slot fishway

Gorazd NOVAK, Dušan ŽAGAR, Matjaž ČETINA University of Ljubljana, Slovenia

Martin BOMBAČ

Institute for hydraulic research, Ljubljana, Slovenia

gorazd.novak@fgg.uni-lj.si

Contents

- Vertical slot fishway
- Field measurements
- Depth averaged 2D model
- Dual SPHysics v4.2 model
 - input
 - discussion of results
 - further work

Vertical slot fishway

- Fishways have a great ecological importanece, as they bridge the interruption of fish migration routes, caused by HPP dams
- Types: weir, Denil, culvert, VSF
- VSF: linear relation *h*(*Q*)

Field measurements

- HPP Arto Blanca, Sava, Slovenia
- Constant conditions: $Q = 1.0 \text{ m}^3/\text{s}$; h = 1.3 m; $\Delta h = 5 \text{ cm}$ between pools;

$$S_{water} = 5 \text{ cm} / 300 \text{ cm} = 0.0167$$

- Measurements:
- leveling \rightarrow elevation (water surface, bed)
- ADV probe \rightarrow velocity components
- *u*, *v*, *w* in 4 representative verticals (V1 ... V4)
- \rightarrow confirmed: flow indeed mostly 2D

 $\rightarrow \rightarrow u, v \text{ in } 250 \text{ points at } z/h = 0.4 (z = 0.5 \text{ m})$

Depth-averaged 2D model PCFLOW2D

• Depth-averaged shallow water equations,

coupled with depth-averaged $k - \varepsilon$ turbulence model

- Mesh: $\Delta x = 1 \text{ cm}$, $\Delta y = 2 \text{ cm}$ (to minimise numerical diffusion)
- Time step: $\Delta t = 0.1$ s (to ensure numerical stability and convergence)
- Simulated: 1 h in nature
- Computational time: several days

Dual SPHysics v4.2 model - geometry

- Inlet + 9 pools + outlet = $39.5 \times 2.2 \times 1.5 \text{ m}$, $S_{bed} = 0.0167$
- Blocks, fill mode: full; object order: F0, B0,... B47
- $dp = 2 \text{ cm} \rightarrow \text{GenCase: 15.1 M particles}$

Constants and execution parameters

Precision in particle interaction: Simple	Time of simulation: 30
Step Algorithm: Verlet	Time out data: 0.2
Verlet Steps: 40	Increase of Z + (%): 100.0
Interaction kernel: Wendland 🔻	Max parts out allowed (%): 100.0
Viscosity Formulation: Artificial	Minimum rhop valid: 700
Viscosity value (appha): 0.01	Maximum rhop valid: 1300
Viscosity factor with boundary: 0	Fixed Domain
Enable DeltaSPH: No 👻	X Min 0.0 X Max 0.0
DeltaSPH value: 0	Y Min 0.0 Y Max 0.0
Shifting mode: None 🔻	Z Min 0.0 Z Max 0.0
Coefficient for shifting: -2	X periodicity
Free surface detection threshold: 0	X Increment 0.0 Y Increment 0.0 Z Increment 0.8
Solid-solid interaction: SPH 💌	Y periodicity
	X Increment 0.0 Y Increment 0.0 Z Increment 0.0
	Z periodicity
Initial time step: 0.0001	X Increment 0.0 Y Increment 0.0 Z Increment 0.0
Minimum time step:	
Minimium time step: 0.00001	
Coefficient for minimum time step: 0.05	Constants: default values

GPU run

- Nvidia GeForce GTX 1080
- Total RunTime: 23.3 h

DualSPHysics4 v4.2.058 (04-06-2018) [Select CUDA Device] [CUDA Capable device(s)] Detected 1 CUDA Capable device(s) CUDA Driver Version / Runtime Version: 9.2 / 9.2 Device 0: "GeForce GTX 1080 Ti" CUDA Capability Major....: 6.1 Global memory.....: 11264 MBytes CUDA Cores.....: 3584 (28 Multiprocessors, 128 CUDA Cores/MP) GPU Max Clock rate.....: 1721 MHz (1.72 GHz) Memory Clock rate....: 5505 Mhz Memory Bus Width..... 352-bit L2 Cache Size....: 2816 KBytes Constant memory..... 64 KBytes Shared memory per block ..: 48 KBytes Registers per block.....: 65536 Maximum threads per MP...: 2048 Maximum threads per block: 1024 Concurrent copy and kernel execution....: Yes with 2 copy engine(s) Run time limit on kernels.....: Yes Integrated GPU sharing Host Memory.....: No Support host page-locked memory mapping.: Yes Device has ECC support..... Disabled CUDA Device Driver Mode (TCC or WDDM)...: WDDM (Windows Display Driver Model) Device supports Unified Addressing (UVA): Yes Device PCI (Domain / Bus / location)....: 0 / 1 / 0 Device supports P2P and RDMA..... No [GPU Hardware] Device default: 0 "GeForce GTX 1080 Ti" Compute capability: 6.1 Memory global: 11264 MB Memory shared: 49152 Bytes [Initialising JSphGpuSingle 14-09-2018 11:13:08] ProgramFile=".../dualsphysics/EXECS/DualSPHysics4.2_win64.exe" ExecutionDir=".../FreeCAD/Mod/DesignSPHysics" XmlFile=".../Steza 20/Steza 20 out/Steza 20.xml" OutputDir=".../Steza_20/Steza_20/Steza_20_out" OutputDataDir=".../Steza 20/Steza 20/Steza 20 out" **Basic case configuration is loaded **Special case configuration is loaded Loading initial state of particles... Loaded particles: 15092273 MapRealPos(border)=(-5.20417e-18,-0.0117321,-0.691732)-(39.52,2.23173,1.79173) MapRealPos(final)=(-5.20417e-18,-0.0117321,-0.691732)-(39.52,2.23173,4.2752) **Initial state of particles is loaded **3D-Simulation parameters: CaseName="Steza 20" RunName="Steza 20" PosDouble="0: Uses and stores in single precision"

Visualization

• PartVTK & IsoSurface Tool \rightarrow export bound, fluid, iso \rightarrow Para View

Flow Tool

Measure Tool – water surface elevation

Measure Tool – velocity profiles

• Exported velocity components: *u*, *v*, *w*

NeasureTool Points										
	BeginX	BeginY	BeginZ	StepX	StepY	StepZ	CountX	CountY	CountZ	
	15.7	0.0	-0.21	0.0	0.02	0.0	1.0	111.0	1.0	

• Focus on 4 profiles:

x = 60, 120, 180, 240 cm *z* = 5, 25, 50, 75, 100, 120 cm step *y* = 0, 2, 4, ... 220 cm

Compared against ADV and 2D model

Dual SPHysics vs. ADV at z = 0.5 m, x = 0.6 m

Dual SPHysics vs. ADV at z = 0.5 m, x = 1.2 m

Dual SPHysics vs. ADV at verticals V1 and V4

Average velocity profile

Average velocity profile (u or v)calculated from 6 profiles from z = 5 cm to z = 120 cm

Average velocity profile at x = 60 cm

Average velocity profile at *x* = 120 cm

Average velocity profile at *x* = 180 cm

Average velocity profile at *x* = 240 cm

Conclusion

- Initial fluid object + periodic boundary condition: OK (Q & h pool)
- Water surface elevation: Δh too small, tailwater level too high
- Velocity field: mostly OK, with some discrepancies
- Possible issues: vortices near the slot, flow over the sharp edge of the downstream wall
- Further work: determine the effect of various execution parameters (*dp*, *α*, visco_bound, laminar + SPS viscosity ...)

Looking forward to test the inlet/outlet boundary condition

References

- Bombač, M. et al., 2017. Study on flow characteristics in vertical slot fishways regarding slot layout optimization. *Ecological Engineering* 107, 126-136.
- Bombač, M. et al., 2015. Extensive field measurements of flow in vertical slot fishway as data for validation of numerical simulations. *Ecological Engineering* 84, 476-484.
- Bombač, M. et al., 2014. Numerical and physical model study of a vertical slot fishway. *Journal of Hydrology and Hydromechanics* 62 (2), 1-10.