Application of a Multidirectional Circular Wave Basin Using DualSPHysics

OTaiga Kanehira*, Hidemi Mutsuda*, Samuel Draycott**, David Ingram***, Yasuaki Doi*

 * Transportation and Environmental Systems, Graduate School of Engineering, Hiroshima University, JAPAN
 ** FloWave Ocean Energy Research Facility, The University of Edinburgh, UK
 *** Institute for Energy Systems, School of Engineering, The University of Edinburgh, Edinburgh, UK

Contents

Background and Objectives
 Overviews of the FloWave
 Application to the FloWave
 Long/Short-Crested wave
 Further applications
 Conclusions

Multi-directional wave basins

Deep-sea basin of NMRI in Tokyo	The FloWave in the University of Edinburgh
The AMOEBA tank in Osaka Univ.	The Maneuvering and Seakeeping Basin (MASK) in U.S. Navy

3

Objectives

To develop a numerical water tank for multi-directional wave basin, the FloWave using DualSPHysics.

Large domain

25m diameter, 2m water depth

Large deformation

Breaking wave, Spike wave, etc.

Fluid structure interactions

Ocean wave energy converter, mooring, etc.

Research Flow

To develop a numerical water tank for multi-directional wave basin, the FloWave using DualSPHysics.

Wave Model	Comparison to unidirectional long-	
Done	 Crested regular/irregular wave trains Multidirectional short-crested wave 	
Future work		
Current Model	 Comparison to flow field captured by CAT or ADV measurements. 	
Wave-Current Model	 Combined wave and current model 	
FSI Model	 Fluid Structures Interactions solver to compute 6DoF motion of floating body 	

Contents

Background and Objectives
 Overviews of the FloWave
 Application to the FloWave
 Long/Short-Crested wave
 Further applications
 Conclusions

Overviews of the FloWave

- Institute for Energy Systems at The University of Edinburgh in UK since Nov. 2013
- Unique test facility:
 Combining multidirectional waves and tidal currents.
- Designed specifically to support marine energy deployment.
- 25m Diameter, 2m depth
- 700mm Wave height, 3s Period
- 2.0m/s Max current speed.
- 168 Hinged-flap type wave makers
- 28 Impellers with 1.7m diameter
- Upper floor : Test section
- Lower floor : Current circulation

Exhibition video : Concentric wave singularity https://www.flowavett.co.uk/home

Demonstration in the FloWave

Psudo-random waves

Spike wave

D. Ingram , Proc. of Oceans, 2014

Psudo-random waves using a JONSWAP spectrum

D. Ingram , Proc. of Oceans, 2014 Concentric wave

Sea Power Platform (WES)

Floating OWC spar buoy (WETFEET)

Contents

Background and Objectives
 Overviews of the FloWave
 Application to the FloWave
 Long/Short-Crested wave
 Further applications
 Conclusions

Application to the FloWave

How to Generate Waves in the FloWave

Biesel transfer functions (Biesel and Suquet 1951)

Far field Biesel transfer function for elevated hinged-type wave-maker

How to Generate Waves in the FloWave

To generate irregular wave trains

 Define the wave spectrum through its characteristic parameters (peak frequency, spectrum shape, etc.).

- 2. Divide the spectrum in *N* parts (*N*>50) the irregular wave is so decomposed into N regular waves.
- 3. Convert the time series of water elevation into the time series of wave-maker movement with the help of Biesel transfer function:

$$\frac{H_i}{S_{0,i}} = \frac{2}{k(h-h_0)} \qquad a_i = \sqrt{2S_\eta(f_i)\Delta f} = H_i/2$$
$$\left[\frac{\sinh(kh)\{(h-h_0)ksinh(kh) - \cosh(kh) + \cosh(kh_0)\}}{\sinh(kh)\cosh(kh) + kh}\right]$$

4. Compose all the components derived from the previous equation into the time series of the piston displacement as:

$$S(z) = \sum_{i=1}^{N} S_{0,i} \cdot \frac{h + z - h_0}{h - h_0}$$

How to Generate Waves in the FloWave

Single summation method

4th DualSPHysics Users Workshop in Lisbon 22nd-24th/10/2018

13

Directional spectrum

Contents

Background and Objectives
 Overviews of the FloWave
 Application to the FloWave
 Long/Short-Crested wave
 Further applications
 Conclusions

Regular Wave

Regular wave conditions

Test case	Frequency (Hz)	Steepness (%)
Case 1	0.3	2
Case 2	0.4	1
Case 3	0.4	2
Case 4	0.4	4
Case 5	0.5	2
Case 6	0.6	2

 $Steepness \\ = \frac{wave \ height \ (H)}{wave \ lengh \ (L)}$

0.4Hz_2% (frequency_steepness)

Positions of wave gauges and coordinate system in the FloWave

Irregular Wave

Irregular wave conditions

Test case	<i>H</i> _{<i>m</i>0} (m)	$T_p(s)$
Case 7	0.15	1.5
Case 8	0.15	2.0
Case 9	0.075	1.5
Case 10	0.075	2.0
Case 11	0.075	2.5
Case 12	0.075	3.0

The PM spectra defined by the significant wave height (H_{mo}) and the peak wave period (T_P)

$$S_{PM}(\omega) = 5\pi^4 \frac{H_s^2}{T_P^4} \cdot \frac{1}{\omega^5} exp\left[-\frac{20\pi^4}{T_p^4} \cdot \frac{1}{\omega^4}\right]$$

Pierson Moskowitz $0.075m_3s (H_{m0}_{p})$

Positions of wave gauges and coordinate system in the FloWave

4th DualSPHysics Users Workshop in Lisbon 22nd-24th/10/2018

17

Long-Crested Wave

Irregular Wave

Pierson Moskowitz $0.075m_3s (H_{m0}_T_p)$

GPU: Quadro M4000 Particles: 8.6 Millions Steps: : 157,690 Computational time: 60s Run time: 58.9hrs.

Wave absorption Wave direction

Wave generation

Hinged-flap type 168 wave makers individually moving

 $\boldsymbol{\chi}$

Long-Crested Wave

Wave propagation snapshot (right) and its validation (left)

The numerical result in the wave amplitude and the phase (especially in the fine particle case $(d_p/D = 2.0 \times 10^{-3})$ shows pretty good agreement with the experimental one in regular/irregular wave conditions.

Short crested wave definition

$$E(f,\theta) = \frac{E(f)}{E(f)} \cdot D(f,\theta)$$

where

 $E(f, \theta)$ = directional spectral density function

- E(f) =one directional energy spectral density function
- $D(f, \theta) =$ angular spreading function
 - f = frequency in hertz
 - $\theta = \text{direction in radians}$

The PM spectra defined by the significant wave height (H_s) and the peak wave period (T_P)

$$S_{PM}(\omega) = 5\pi^4 \frac{H_s^2}{T_P^4} \cdot \frac{1}{\omega^5} exp\left[-\frac{20\pi^4}{T_p^4} \cdot \frac{1}{\omega^4}\right]$$

Definition of short crested wave

Frequency (Hz)

Fig. PM spectra with the significant wave height (H_s) and the peak wave period (T_P)

Definition of short crested wave

Short crested wave definition

$$E(f,\theta) = E(f) \cdot \frac{D(f,\theta)}{D(f,\theta)}$$

Cosine-2s directional spreading functions Longuet-Higgins, et al. (1963).

$$\mathsf{D}(f,\theta) = \left(\frac{2^{(2s-1)}}{\pi}\right) \left(\frac{\gamma^2(s+1)}{\gamma(2s+1)}\right) \cos^{2s} \frac{\theta - \theta_0}{2}$$

where

- γ = the Gamma function
- θ_0 = the mean wave direction
 - s = the spreading parameter which is a function of frequency and wind speed

Directional spectrum

S. Draycott, Ocean Engineering, 2018

short crested wave conditions

22

Short crested wave conditions

Test case	<i>H_{m0}</i> (m)	$T_p(s)$	S
Case 1	0.15	1.5	5
Case 2	0.15	1.5	10
Case 3	0.15	1.5	25
Case 4	0.15	1.5	Inf
Case 5	0.075	3.0	5
Case 6	0.075	3.0	10
Case 7	0.075	3.0	25
Case 8	0.075	3.0	Inf

where

s=Inf denotes no spreading i.e. unidirectional, and s=5 is the largest directional spread.

Positions of wave gauges

Gauge	<i>x</i> (m)	<i>y</i> (m)
Gauge 1	0	-0.915
Gauge 2	0	-0.81
Gauge 3	0	-0.255
Gauge 4	0	0
Gauge5	0	0.434
Gauge 6	0	0.711
Gauge 7	0	0.88
Gauge 8	0	0.93
Gauge 9	-1.32	-0.917
Gauge 10	-1.32	2.523

Positions of wave gauges and coordinate system of the FloWave WM42 0 WM Wave gauges WM 84 1 $\circ O \stackrel{\circ}{\partial} x$

WM126

WM :Wave Makers

Hs=0.15*m Tp*=1.5*s s*=5

GPU: GeForce GTX 1080 Ti Particles: 38.6 Millions Steps: : 266,484 Computational time: 60s Run time: 119.3hrs.

24

Wave

absorption

Validation of water surface elevation

4th DualSPHysics Users Workshop in Lisbon 22nd-24th/10/2018

25

Contents

Background and Objectives
 Overviews of the FloWave
 Application to the FloWave
 Long/Short-Crested wave
 Further applications
 Conclusions

Further applications Demonstration of fluid structure interaction

4th DualSPHysics Users Workshop in Lisbon 22nd-24th/10/2018

28

Spike Wave

Wave propagation snapshot (right) and its validation (left)

Contents

Background and Objectives
 Application to the FloWave
 Short crested wave
 Further applications
 Conclusions

Conclusions

- ➤ We developed the numerical wave tank for the multidirectional wave basins, the FloWave using DualSPHysics.
- The numerical tank with the 168 hinged-flap type wave makers can reproduce not only long-crested regular/irregular wave trains but also short-crested waves with muti-spectrum.
- ➢ It can also reproduce spike wave (focused breaking wave), the maximum wave height in centre of tank is about 3.8m in fine particle case. This model can obtain a lot of information regarding wave filed such as velocity, pressure, and wave height of FloWave.

Contact: d176430@hiroshima-u.ac.jp

