DualSPHysics Users Workshop 2017, Parma

L. Beck, J. Gutekunst, P. Sabrowski

ADAPTIVITY IN SPH

A REVIEW OF VACONDIO'S APPROACH

Sponsored by:

INTRODUCTION

THIN CONSTRICTIONS

FIGURE: VARIABLE RESOLUTION IN SPH

FIGURE: BEFORE SPLITTING

FIGURE: AFTER SPLITTING

 $\varepsilon \Delta r$

αh

DISCRETIZED MOMENTUM EQUATION WITH VARIABLE H

$$\frac{d\boldsymbol{v}_{a}}{dt} = -\sum_{b} \frac{m_{b}}{\rho_{a}\rho_{b}} \left[p_{a}\nabla w(\boldsymbol{r}_{ab},\boldsymbol{h}_{b}) + p_{b}\nabla w(\boldsymbol{r}_{ab},\boldsymbol{h}_{a}) \right] + \sum_{b} m_{b} \frac{4\nu\,\boldsymbol{r}_{ab}\cdot\nabla\overline{w}_{ab}}{(\rho_{a}+\rho_{b})\,\boldsymbol{r}_{ab}^{2}}\boldsymbol{v}_{ab}$$

ADAPTIVITY

CONSERVATION OF PHYSICAL PROPERTIES

ADAPTIVITY RESULTS

SPHERIC BENCHMARK TESTCASE #2 – 2D

Resolution	adaptive	fine	coarse
Particle diameter [m]	0.01	0.00378	0.01
Initial number of particles	6,710	46,980	6,710
Maximum number of particles	32.193	-	-

ADAPTIVITY RESULTS

SPHERIC BENCHMARK TESTCASE #2 – 3D

ADAPTIVITY RESULTS

FIGURE: EXPERIMENTAL SETUP FOR CAVITY FLOW

Inlet	6 cm x 6 cm
Inlet Velocity	1 m/s
Domain Length	55 cm

dive.SPH

ADAPTIVITY RESULTS

2D CAVITY FLOW

Resolution	adaptive	fine	coarse
Particle diameter [m]	0.0026	0.001	0.0026
Maximum number of particles	11,400	70,500	9,300
Viscosity model	Lo – Shao Laminar Viscosity		

FIGURE: ADAPTIVE RESOLUTION

FIGURE: LOW RESOLUTION

FIGURE: HIGH RESOLUTION

CONCLUSION

KINETIC ENERGY

"Influence of kinetic energy loss is negligible."

VISCOUS EFFECTS

"Viscous effects & vortex dissipation in adaptive region."

FUTURE WORK

- **1**. Investigation in smoothing length effects
- 2. Validation with experimental data
- 3. Comparison to the adaptive approach by Barcarolo & Chiron

FIGURE: ADAPTIVE APPROACH BY BARCAROLO

REFERENCES

VACONDIO, R., CRESPO, A.J.C., DOMINGUEZ, J. M., ROGERS, B. D., 2015, "DualSPHysics with adaptivity: towards the simulation of real engineering problems with variable resolution"

VACONDIO, R., ROGERS, B. D., Stansby, P. K., Mignosa, P., 2015 "Variable resolution for SPH in three dimensions: Towards optimal splitting and coalescing for dynamic adaptivity"

VACONDIO, R., ROGERS, B. D., Stansby, P. K., Mignosa, P., Feldman, J., 2013 "Variable resolution for SPH: A dynamic particle coalescing and splitting scheme"

BARCAROLO, D.A., LE TOUZÉ, D., OGER, G., VUYST, F., 2014, "Adaptive particle refinement and derefinement applied to the smoothed particle hydrodynamics method"

ISSA,R., VIOLEAU, D., "SPHERIC Benchmark Test 2: 3D schematic dam break and evolution of the free surface"

FIGURE: 3D CAVITIY FLOW WITH ADAPTIVITY 600.000 PARTICLES

University of Applied Sciences

BEUTH HOCHSCHULE FÜR TECHNIK BERLIN

Lennart Beck Beuth University of Applied Sciences, Berlin Lennart.Beck@beuth-hochschule.de This work is funded by:

