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Our Road Map

• Where have we been?
• Introduction: why are Earth Scientists excited by SPH?

• Background: review established bedrock channel incision models

• Problem: a great deal of information is missing 

• Where are we now?
• Finite Element Earth

• Coupling of FEA with SPH

• Where are we going?
• Current Limitations

• Future Work



Applying SPH to Bedrock Incision: Why Should We Bother?

Bedrock channels
• “…transmit tectonic and/or climatic signals throughout the landscape” (Whipple & Tucker, 1999)

• “…set the boundary conditions for hillslope processes (e.g., soil creep and landslides) responsible 
for denudation of the land surface” (Whipple & Tucker, 1999)

GIF Credits: giphy.com



Dynamic Landscapes

• Our work examines the intersection of:

• Geodynamics: forces associated with deep Earth processes

• Geomorphology: shaping of Earth’s surface

…in dynamic environments with complex and competing interactions:
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The established bedrock incision paradigm considers “shear” stress:

• Erodibility (K) represents the collective influence of climate, sediment supply, grain 
size, fracture spacing, and more

𝑑𝑧

𝑑𝑡
= rate of bedrock channel erosion

K = erodibility constant

τ = shear stress imposed by the fluid

𝜏𝑐 = critical shear stress

𝑑𝑧

𝑑𝑡
= K(τ − 𝜏𝑐)

Shear Stress Model

…but fails to capture the inertial term of Navier-Stokes (N-S)



The inertial term of N-S becomes very important in bedrock channels 

wherever there are steps, bends, or other causes for local accelerations



Hydraulic Forces with DualSPHysics

ComputeForces in DualSPHysics v4.0:

Finally, a tool to derive the fluvial 

contribution to the total stress state 

of dynamic landscapes

Image Credits: Crespo et al., 2015



COUPLED MODEL

Hydrodynamics   + Failure Dynamics

Failure

Earth

Response

Model

+

(Koons and Upton, 

in prep)



Determining the Total Stress in the Landscape

S = sfluvial

s1 s3
s2
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Determining the Total Stress in the Landscape
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Bedrock Channel Erosion: The FERM Approach

• Now we can examine the three-dimensional stress state of any point in our 

domain and evaluate its failure potential based on measurements of:

• Cohesion

• Tensile Strength

• Pore Fluid Pressure

• Friction angle

• Fluvial

• Topography

• Glaciers

• Seismicity

• Any other quantifiable stress

Strength

Stress
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The strength components are 

measurable in the field, so we can 

predict failure as a function of 

observable, measurable phenomena



Bedrock Channel Erosion: The FERM Approach

• Now we can examine the three-dimensional stress state of any point in our 

domain and evaluate its failure potential based on measurements of:

• Cohesion

• Tensile Strength

• Pore Fluid Pressure

• Friction angle

• Fluvial

• Topography

• Glaciers

• Seismicity

• Any other quantifiable stress

Strength

Stress

Blocks are removed when:

C ∶ τ ≤ 1
C = strength
𝜏 = differential stress



An Example of Coupled FERM-DualSPHysics

Let’s examine a simple 
synthetic example of a 
channel with a vertical 
drop akin to a fault scarp 
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Above: fault scarp development following the 2016 Kaikoura earthquake 

(magnitude 7.8, South Island of New Zealand)
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(Fast Lagrangian Analysis of 
Continua in 3 Dimensions), a 
commercial FEA solver 
traditionally used for 
geotechnical investigations
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Channelized Flow in DualSPHysics
Constants, Parameters, etc.

Domain Size 20 m (x), 20 m (y), 5.5 m (z)

dp (distance between particles) 0.1 m

Number of Particles (initial state) 112722 (bound=97115, fluid=15607)

Number of Particles (final erosion cycle) 145962 (bound=108500, fluid=37462)

Viscosity Scheme Artificial

speed of sound coefficient (α) 20

Viscosity Value 0.1

ViscoBoundFactor (α𝑓𝑏) 10

Step Algorithm Symplectic

Kernel Wendland

Precision Double

delta-SPH (δΦ) 0.1

Time of Simulation 30 s

XPeriodicIncZ 2.5

Estimated as per:

Barreiro A, Domínguez JM, 

Crespo AJC, González-Jorge 

H, Roca D, et al. (2014) 

Integration of UAV 

Photogrammetry and SPH 

Modelling of Fluids to

Study Runoff on Real 

Terrains. PLoS ONE 9(11): 

e111031.



An Example of Coupled FERM-DualSPHysics

Let’s take a look at our 
fault scarp in GenCase

Photo Credits: Kate Pedley, University of Canterbury

Above: fault scarp development following the 2016 Kaikoura earthquake 

(magnitude 7.8, South Island of New Zealand)



Channelized Flow in 
DualSPHysics
Dimensions:

• 20m long (x)

• 20m wide (y)

• 2m drop at fault scarp

• Channel slope ≈1.5°

• Banks slope ≈12° towards 
channel

• Channel is 1.5m wide at top of 
banks, 0.75m wide at the 
channel bed



Channelized Flow in 
DualSPHysics
Boundary Conditions

• Periodic Boundary Condition in 
the x-dimension

• Flow gates are used to control 
the discharge



Coupling Methods

• Once the flow approaches a 
steady state, a “snapshot” of 
the forces (at t = 30s) is used 
as the force inputs into the 
failure solver













































Landscape 
Complexity

After cycles (here, 20 cycles) 
of SPH-FERM erosion, the 
magnitude and directional 
complexity of the hydraulic 
forces increases

Initial Flow (pre-erosion)

20 Erosion Cycles Later
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Changes in Force Distribution

Top frame: 5th erosion cycle

Bottom frame: 20th erosion cycle

5th Erosion Cycle

20th Erosion Cycle

Flow Direction

Flow Direction



Conclusion: What Do We Gain?

• Flexible, scalable, physics-based erosion

• Physics-based way of studying the interaction of water with the earth

• Quantifiable stresses in changing geometries, especially at drops and 

bends (where most of the work is done)

• Model based on strength measurements that can be measured in the field 

by replacing non-physical approximations with engineering parameters

• Complex flows with deformable Earth  single way of describing the 

Earth (full stress tensor)  We can now look at coupled systems with a 

flow component



How to Improve

• More sophisticated surface process model

• Rolling and sliding blocks with hillslope failure

• Coupling with Project Chrono



Role of “Tools” 
in the Stress State 

of a Channel

• A cobble or boulder 
impacting the bed 
after a vertical fall 
produces stresses which 
are not being 
accounted for in the 
present model



How to Improve

• More sophisticated surface process model

• Rolling and sliding blocks with hillslope failure

• Coupling with Project Chrono

• Sediment transport

• Grain size heterogeneity (Coupling with Project Chrono)

• Availability of more BCs in DualSPHysics Multiphase

• More powerful BCs for streams (inlet/outlet)

• Larger Domains 

• Multi-GPU support

• Variable Resolution
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