HPC for SPH methods:
Multicore, GPU and multiGPU

UniversidageVigo
José Dominguez, A. Mokos, B.D. Rogers,

MANCHFSEEER A.J.C. Crespo and M. Gomez-Gesteira

The University of Manchester

DualSPHysics

Video link:

https://youtu.be/pnL.TWUK6WPC

https://youtu.be/pnLTWUk6wPc

https://voutu.be/747v7vi7vho

https://youtu.be/747v7vi7vho

Outline

1. Introduction
1.1. Smooth Particle Hydrodynamics
1.2. Why is SPH too slow?
1.3. High Performance Computing (HPC)
1.4. DualSPHysics project

2. DualSPHysics implementation
2.1. Implementation in three steps
2.2. Neighbour list approaches

3. CPU acceleration

4. GPU acceleration
4.1. Parallelization problems in SPH
4.2. GPU optimisations

5. Multi-GPU acceleration
5.1. Dynamic load balancing
5.2. Latest optimisations in Multi-GPU
5.3. Large simulations
5.4. Future improvements

6. New Multi-GPU approach

3'd DualSPHysics Users Workhop, 13-15 November 2017, Parma (lItaly)

1.1. Smooth Particle Hydrodynamics

PHYSICAL GOVERNING EQUATIONS

S

EULERIAN DESCRIPTION LAGRANGIAN DESCRIPTION
(spatial description) (material description)

COMPUTATIONAL METHODS

("

GRID-BASED METHODS

MESHFREE METHODS

MESHFREE PARTICLE METHODS
(particle represents a part of
the continuum domain)

SMOOTHED PARTICLE HYDRODYNAMICS

3'd DualSPHysics Users Workhop, 13-15 November 2017, Parma (lItaly)

1.1. Smooth Particle Hydrodynamics

SPH method was invented for astrophysics during the seventies, but now it is
applied in many different fields including fluid dynamics and solid mechanics.

Fluid is represented using particles which move according to the governing
dynamics.

Fluid R Particles

°
....%...
0 ©® ® 0
L)
e

Comparing to grid-based methods, SPH interactions are carried out between a
given particle and its moving neighbours. Thus, these neighbours are
unknown since they change at each instant.

3'd DualSPHysics Users Workhop, 13-15 November 2017, Parma (ltaly)

1.1. Smooth Particle Hydrodynamics

SPH method was invented for astrophysics during the seventies, but now it is
applied in many different fields including fluid dynamics and solid mechanics.

Fluid is represented using particles which move according to the governing
dynamics.

SPH is particularly suited to describe a variety of free-surface flows:

« Wave propagation over a beach.
* Plunging breakers.
« Wave-structure interactions.

« Solid bodies impacting on
water surface.

 Dam breaks.

3'd DualSPHysics Users Workhop, 13-15 November 2017, Parma (ltaly)

1.2. Why is SPH too slow?

Drawbacks of SPH:

« SPH presents a high computational cost that increases when increasing the
number of particles.

« The simulation of real problems requires a high resolution which implies

simulating millions of particles.

The time required to simulate a few seconds is too large. One second of
physical time can take several days of calculation.

3'd DualSPHysics Users Workhop, 13-15 November 2017, Parma (lItaly)

1.2. Why is SPH too slow?

The SPH method is very expensive in terms of computing time.

e For example, a simulation of this dam break

300,000 particles Takes more than
+ 15 hours
Time: 015 1.5 s (physical time) (execution time)

Time: 0.45 s

Time: 0.75 s

1.2. Why is SPH too slow?

The SPH method is very expensive in terms of computing time.

For example, a simulation of this dam break

300,000 particles Takes more than
L 15 hours
Time: 015 1.5 s (physical time) (execution time)
. because:

» Each particle interacts
with more than 250
neighbours.

Time: 0.45 s

Time: 0.75 s

1.2. Why is SPH too slow?

The SPH method is very expensive in terms of computing time.

For example, a simulation of this dam break

300,000 particles Takes more than
& 15 hours
Time: 015 1.5 s (physical time) (execution time)
. because:

» Each particle interacts
with more than 250
neighbours.

Time: 0.45 s

e At=10°-10% so more
than 16,000 steps are
needed to simulate 1.5 s

Time: 0.75 s of physical time.

1.2. Why is SPH too slow?

Drawbacks of SPH:

« SPH presents a high computational cost that increases when increasing the
number of particles.

« The simulation of real problems requires a high resolution which implies
simulating millions of particles.

-

The time required to simulate a few seconds is too large. One second of
physical time can take several days of calculation.

IT IS NECESSARY TO USE HPC TECHNIQUES TO REDUCE THESE
COMPUTATION TIMES.

3'd DualSPHysics Users Workhop, 13-15 November 2017, Parma (lItaly)

1.3. High Performance Computing (HPC)

HPC includes multiple techniques of parallel computing and distributed
computing that allow you to execute several operations simultaneously.

The main technigues used to accelerate SPH are:
* OpenMP (Open Multi-Processing)

— Model of parallel programming for systems of
shared memory.

— Portable and flexible programming interface
using directives.

Multi-core processor

— Its implementation does not involve major
changes in the code.

— The improvement is limited by the number of
cores.

OPENMP IS THE BEST OPTION TO OPTIMIZE THE PERFORMANCE
OF THE MULTIPLE CORES OF THE CURRENT CPUS.

3'd DualSPHysics Users Workhop, 13-15 November 2017, Parma (lItaly)

1.3. High Performance Computing (HPC)

HPC includes multiple techniques of parallel computing and distributed

computing that allow you to execute several operations simultaneously.

The main technigues used to accelerate SPH are:

« MPI (Message Passing Interface)

Message-passing library specification for
systems of distributed memory: parallel
computers and clusters.

Several processes are communicated by calling
routines to send and receive messages.

The use of MPI is typically combined with
OpenMP in clusters by wusing a hybrid
communication model.

Very expensive for a small research group.

MPI cluster

MPI IS THE BEST OPTION TO COMBINE THE RESOURCES OF

MULTIPLE MACHINES CONNECTED VIA NETWORK.

3'd DualSPHysics Users Workhop, 13-15 November 2017, Parma (lItaly)

1.3. High Performance Computing (HPC)

HPC includes multiple techniques of parallel computing and distributed
computing that allow you to execute several operations simultaneously.

The main technigues used to accelerate SPH are:

* GPGPU (General-Purpose Computing on Graphics Processing Units)

— It involves the study and use of parallel
computing ability of a GPU to perform general
purpose programs.

— New general purpose programming languages
and APIs (such as Brook and CUDA) provide
an easier access to the computing power of GPU
GPUEs.

— New implementation of the algorithms used in
CPU is necessary for an efficient use in GPU.

3'd DualSPHysics Users Workhop, 13-15 November 2017, Parma (lItaly)

1.3. High Performance Computing (HPC)

Theoretical GFLOP/s at base clock CUDA Programming Guide v8.0
11000

10500

10000 . o
=+—=NVIDIA GPU Single Precision
9500

9000 —+—NVIDIA GPU Double Precision

8500 =i==|ntel CPU Single Precision

8000
#+—Intel CPU Double Precision
7500

Graphics Processing Units (GPUs)

 powerful parallel processors

3500
« designed for graphics rendering 300

« their computing power has increased
much faster than CPUs,

500

0
2005 2007 2009 2011 2013 2015

Advantages: GPUs provide a high calculation power with very low cost and without
expensive infrastructures.

Drawbacks: An efficient and full use of the capabilities of the GPUs is not
straightforward.

3'd DualSPHysics Users Workhop, 13-15 November 2017, Parma (lItaly)

1.3. High Performance Computing (HPC)
Why GPUs?

GPUs are an accessible tool to accelerate SPH,
all numerical methods in CFD and any computational method

5X 18X 30X 36X
Digital Content Creation Video Transcoding 3D Ultrasound Gene Sequencing Molecular Dynamics
Adobe Elemental Technologies TechniScan U of Maryland U of Illinois, Urbana-Champaign

SOLG AP A ARG,

50X 80X 100X 146X 149X

MATLAB Computing Weather Modeling Astrophysics Medical Imaging Financial Simulation
AccelerEyes Tokyo Institute of Technology RIKEN U of Utah Oxford University
http://www.nvidia.com

3'd DualSPHysics Users Workhop, 13-15 November 2017, Parma (lItaly)

http://www.nvidia.com/

1.3. High Performance Computing (HPC)

Why GPUSs? TOP500 LIST — JUNE 2017
https://www.top500.org/lists/2017/06/

Rmax Rpeak Power
Rank System Cores (TFlop/s] (TFlop/s] (kW)
1 Sunway TaihuLight - Sunway MPP, Sunway SW26010 2560C 1.45GHz, 10,649,600 93,0146 1254359 15,371
Sunway , NECPC
Mational Supercomputing Center in Wuxi
China
2 Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel Xeon E5-2692 12C 3,120,000 33,8627 54,9024 17,808

2. 200GHz, TH Express-2, Intel Xeon Phi 3151P , NUDT
Mational Super Computer Center in Guangzhou

China

Piz Daint - Cray XC50, Xeon E5-2690v3 12C 2_6GHz, Aries interconnect, 361,760 195900 253263
MNVIDIA Tesla P100 , Cray Inc.
Swiss National Supercomputing Centre (CSCS)

Switzerland

Titan - Cray XK7, Opteron 6274 16C 2 200GHz, Cray Gemini interconnect, 560,640 17,5900 271125
MVIDIA K20x , Cray Inc.

DOE/SC/0ak Ridge Mational Laboratory

United States

5 Sequoia - BlueGene/Q, Power BAC 14C 1.60 GHz, Custom , IBM 1572884 171732 201327 7,890
DOE/MMNSASLLMNL
United States

https://www.top500.org/lists/2016/11/

1.3. High Performance Computing (HPC)

Why GPUs? GREENS500 LIST — JUNE 2016
https://www.top500.org/green500/lists/2017/06/

TOPS500 Rmax Power Power Efficiency
Rank Rank System Cores (TFlopls) (kW) (GFlops/watts)
1 61 TSUBAMES3.0 - SGI ICE XA, IP139-SXM2, Xeon E5-2680v4 14C 2 4GHz, Intel Omni- 36,288 1,998.0 142 14110

Path, NVIDIA Tesla P100 SXM2 , HPE
GSIC Center, Tokyo Institute of Technology (Japan)

2 465 kukai - ZettaScaler-1.6 GPGPU system, Xeon E5-2650Lv4 14C 1.7GHz, Infiniband 10,080 460.7 33 14 046
FDR, NVIDIA Tesla P100 , ExaScalar
Yahoo Japan Corporation (Japan)

3 148 AIST Al Cloud - NEC 4U-8GPU Server, Xeon E5-2630Lv4 10C 1.8GHz, Infiniband 23,400 961.0 76 12681
EDR, NVIDIA Tesla P100 SXM2 , NEC
National Institute of Advanced Industrial Science and Technology (Japan)

4 305 RAIDEN GPU subsystem - NVIDIA DGX-1, Xeon E5-2698v4 20C 2.2GHz, Infiniband 11,712 635.1 60 10.603
EDR, NVIDIA Tesla P100 , Fujitsu
Center for Advanced Intelligence Project, RIKEN (Japan)

5 100 Wilkes-2 - Dell C4130, Xeon E5-2650v4 12C 2 2GHz, Infiniband EDR, NVIDIA Tesla 21,240 1,193.0 114 10.428
P100, Dell
University of Cambridge (United Kingdom)

6 3 Piz Daint - Cray XC50, Xeon E5-2690v3 12C 2 6GHz, Aries interconnect , NVIDIA 361,760 19,5900 2272 10.398
Tesla P100, Cray Inc.
Swiss National Supercomputing Centre (CSCS) (Switzerland)

T 69 Gyoukou - ZettaScaler-2.0 HPC system, Xeon D-1571 16C 1.3GHz, Infiniband EDR, 3,176,000 16771 164 10.226
PEZY-5C2 | ExaScalar
Japan Agency for Marine -Earth Science and Technology (Japan)

J

(8 220 Research Computation Facility for GOSAT-2 (RCF2) - SGI Rackable C1104-GP1, 16,320 7704 79 9797
Xeon E5-2650v4 12C 2.2GHz, Infiniband EDR, NVIDIA Tesla P100 , NSSOL/HPE
National Institute for Environmental Studies (Japan)

9 k)| NVIDIA DGX-1/Penguin Relion 2904GT, Xeon E5-2698v4 20C 2.2GHz/ E5-2650v4, 60,512 3,307.0 350 9.462
Mellanox Infiniband EDR, NVIDIA Tesla P100 , Facebook
Facebook (United States)

10 32 DGX Saturn V - NVIDIA DGX-1, Xeon E5-2698v4 20C 2.2GHz, Infiniband EDR, 60,512 3,307.0 350 9.462

NVIDIA Tesla P100 , Nvidia

https://www.top500.org/green500/lists/2016/06/

1.4. DualSPHysics project
The DualSPHysics code was created starting from SPHysics.

DEVELOPED JOINTLY BY
RESEARCHERS AT

MANCH !_\; 111 ER

Johns Hopkins Universidade de University of
University Vigo Manchester
(USA) (Spain) (UK)

SPHysics is a numerical model SPH developed for the study of free-surface problems.

It is a code written in Fortran90 with numerous options (different kernels, several
boundary conditions,...), which had already demonstrated high accuracy in several
validations with experimental results... but it is too slow to apply to large domains.

3'd DualSPHysics Users Workhop, 13-15 November 2017, Parma (lItaly)

1.4. DualSPHysics project

. W =

00000000 000

2400000000000, ,..u.ﬁf::h First version in late 2009.
“ 9900000000 +00000000°~"
‘900000000 ‘oooooorr . . . _
V0000000000000 It includes two implementations:
CPU :ssssssssesssss: JPU - CPU: C++ and OpenMP.
2000000000000 008

/0000000000000000. - GPU: CUDA.

. 0000000000000000006
«00000000000000000000.

m Both options optimized for the best
Dua IS PHySICS performance of each architecture.

Why two implementations?
This code can be used on machines with GPU and without GPU.
It allows us to make a fair and realistic comparison between CPU and GPU.

Some algorithms are complex and it is easy to make errors difficult to detect. So they are
Implemented twice and we can compare results.

It is easier to understand the code in CUDA when you can see the same code in C++.
Drawback: It is necessary to implement and to maintain two different codes.

3'd DualSPHysics Users Workhop, 13-15 November 2017, Parma (lItaly)

1.4. DualSPHysics project

DuaISPHy5|cs
DSPH project includes:
Geometry (cad, 3ds, Configuration
dwg, stl, vtk..) (parameters motion...)
Pre—processmg DualSPHysics Post-processing
tools solver tools
Result analy5|s Vlsuallzatlon
(Data in csv, xIs, m...) (videos, images, graphs)
Pre-processing tools: DualSPHysics solver: Post-processing tools:
« Converts geometry into * Runs simulation using » Calculates magnitudes using
particles. SPH particles. particle data.
* Provides configuration * Obtains data simulation « Generates images and
for simulation. for time intervals. videos starting form SPH
particles.

3'd DualSPHysics Users Workhop, 13-15 November 2017, Parma (lItaly)

24000000006, 2900000000,

900000000. 000000007

1.4. DualSPHysics project epu v
DualSPHysics DualSPHysics

FAQ References Downloads Validation Animations SPHysics GPU Computing

Developers Contact News Forums

-

44

UniversidagVigo MANCHESTER

1824

The University of Manchester

DualSPHysics is based on the Smoothed Particle Hydrodvnamics model
named SPHysics (www.sphysics.org).

The code is developed to study free-surface flow phenomena where Eulerian
methods can be difficult to apply, such as waves or impact of dam-breaks on
off-shore structures. DualSPHysics is a set of C++, CUDA and Java codes
designed to deal with real-life engineering problems.

Contact E-Mail: dualsphysics@gmail.com

Youtube Channel: www.youtube.com/user/DualSPHysics

Twitter Account: @DualSPHysics

www.dual.sphysics.orqg

oooooooooooooooooooo
00000000000000000000000000
oooooooooooooooooooooo
oooooooooooooooooo
oooooooo

1.4. DualSPHysics project cpu i gpu
DualSPHysics

SV GVl DEVELOPED JOINTLY BY

RESEARCHERS AT

DualSPHysics / l\.

and many contributors

=< Dr Benedict Rogers
MAN(H l - \ I Ell Dr Georgios Fourtakas
) 1O Dr Athanasios Mokos
3.2 1 Dr Stephen Longshaw

Abouzied Nasar
Prof. Peter Stansby

Prof. Moncho Gomez Gesteira_ e
a & - . Dr Alejandro J. C. Crespo UNIVERSITA Dr Renato Vacondio
Universidade de University of Dr José Dominguez Alonso BrSARAL™' Prof. Paolo Mignosa
. Dr Anxo Barreiro Aller :
3 o . ‘ . Orlando Garcia Feal
Vigo Manchester 7

(Spain) (UK)
Prof. Rui Ferreira
Dr Ricardo Canelas

www.dual.sphysics.org

3'd DualSPHysics Users Workhop, 13-15 November 2017, Parma (ltaly)

00000000000000000000
ooooooooooooooo
~eaee

1.4. DualSPHysics project - i

9Py

°
..... oo

DualSPHysics

o0
/00
oo

People working on DualSPHysics project:

Dr Benedict D. Rogers
Dr Athanasios Mokos
Dr Georgios Fourtakas
Prof. Peter Stanshy flanders " Dr Corrado Altomare
Alex Chow HYDRAULICS RESEARCH Dr Tomohiro Suzuki

Annelie Baines

Prof. Moncho Gémez Gesteira
Dr Alejandro J.C. Crespo
Dr Jose M. Dominguez
Dr José Gonzalez-Cao
Orlando G. Feal

Andrés Vieira

A UNIVERSITA Dr Renato Vacondio
DEGLI STUDI

DI PARMA 1 Prof. Paolo Mignosa

\&\é

@ UNIVERSITAT POLITECNICA Dr Xavier Gironella
DE CATALUNYA

E I.;J Andrea Marzeddu

UniversidaggVigo

Prof. Rui Ferreira @ TECNICO LISBOA
Y

Dr Ricardo Canelas

3'd DualSPHysics Users Workhop, 13-15 November 2017, Parma (lItaly)

1.4. DualSPHysics project

Dr Benedict D. Rogers
Dr Athanasios Mokos
Dr Georgios Fourtakas
Prof. Peter Stansby
Alex Chow

Annelie Baines

Prof. Moncho Gomez Gesteira
Dr Alejandro J.C. Crespo

00806000,
ooooooooo
oooooo

’

4000080000
ooooooo
~aoe

cpu

S o
1alSPHysics

o0
/00
oo

Dua

Dr Corrado Altomare
Dr Tomohiroe Suzuki

_;..;'ga' N UNIVERSITA
L..3) DEGLI STUDI
&ie/ DI PARMA

Dr Jose M. Dominguez
Dr José Gonzalez-Cao

UniversidagVigo

Dr Renato Vacondio

1 Prof. Paolo Mignosa

Orlando G. Feal

o
Andrés Vieira d
UNIVERSITAT POLIT
UPE DE CATALUNYA
G\l
Prof. Rui Ferreira 4 W TECNICO LISBOA @ I"J
Dr Ricardo Canelas v

Dr Xavier Gironella
Andrea Marzeddu

It has been downloaded and used by researchers but also by companies:
NASA JSC, BAE Systems, Volkswagen AG, McLaren Racing Ltd, Forum NOKIA,
NVIDIA, AECOM, HDR Engineering, ABPmer, DLR, Maine Marine Composites,

CFD-NUMERICS, BMT Group, Oak Ridge National

Laboratory, Rainpower

Norway, American Wave Machines,, National Renewable Energy Laboratory in

U.S.A., Atria Power Corporation Ltd., Global Hydro
Energy Ltd, etc.

Energy, Carnegie Wave

3'd DualSPHysics Users Workhop, 13-15 November 2017, Parma (lItaly)

Outline

1. Introduction
1.1. Smooth Particle Hydrodynamics
1.2. Why is SPH too slow?
1.3. High Performance Computing (HPC)
1.4. DualSPHysics project

2. DualSPHysics implementation
2.1. Implementation in three steps
2.2. Neighbour list approaches

3. CPU acceleration

4. GPU acceleration
4.1. Parallelization problems in SPH
4.2. GPU optimisations

5. Multi-GPU acceleration
5.1. Dynamic load balancing
5.2. Latest optimisations in Multi-GPU
5.3. Large simulations
5.4. Future improvements

6. New Multi-GPU approach

3'd DualSPHysics Users Workhop, 13-15 November 2017, Parma (lItaly)

2.1. Implementation in three steps

For the implementation of SPH, the code is organised in 3 main steps that are repeated
each time step till the end of the simulation.

Neighbour list (NL):
Particles are grouped in cells and reordered to
optimise the next step.

. : Particle interactions (PI):
Neighbour List) .
{ (NL) } Forces between particles are computed, solving

momentum and continuity equations.

J /% This step takes more than 95% of execution
time.

Particle :> System System update (SU):
@“tera“ion (P'J [Update (SU) J Starting from the values of computed forces, the
@ magnitudes of the particles are updated for the
next instant of the simulation.
Save Data
[(occasionally)}

3'd DualSPHysics Users Workhop, 13-15 November 2017, Parma (lItaly)

2.2. Neighbour list approaches

Particle Interaction (Pl) consumes more than
b 95% of the execution time. However, its

BT Implementation and performance depends
greatly on the Neighbour List (NL).

. /& NL step creates the neighbour list to
Particle System

@ optimise the search for neighbours during
&

particle interaction.

Save Data
(occasionally)

Two approaches were studied:
* Cell-linked list (CLL)

* Verlet list (VL)
« Classical Verlet List (VL)
* Improved Verlet List (VLy)

3'd DualSPHysics Users Workhop, 13-15 November 2017, Parma (lItaly)

2.2. Neighbour list approaches

Cell-linked List (CLL)

« The computational domain is divided in cells of side 2h (cut-off limit).
 Particles are stored according to the cell they belong to.
« So each particle only looks for its potential neighbours in the adjacent cells.

®
P 57080 L 0P T Z0 L0030 Lo
09”0 0°052 599000505 0040
0RO 032000~ 330 0060 V& 050
800000 OO0~0H050 P00 00 ~00
O 660 S 60 00
Qogooooo Q00 5.6 09° Q O%Q

3'd DualSPHysics Users Workhop, 13-15 November 2017, Parma (lItaly)

2.2. Neighbour list approaches

Cell-linked List (CLL)

« The computational domain is divided in cells of side 2h (cut-off limit).
 Particles are stored according to the cell they belong to.
« So each particle only looks for its potential neighbours in the adjacent cells.

............. ©Q.;..Q.@Q..@....@..........@L.....Q.@Q.bq.@90.8@..@....@.. In this example:

|) SO0 Y AN o
_____ 0500279005059 "L 0 0000

(:) . i | | E
O 0. 020 000 O 00 00! O
O ad Y0 = RO Fab e g~ 3O
6 o050 50 Co2ho"0X 600~ o
e Q@ o O :@OO Q@O

............ A e) S A ey) (-
°80003000" §0a 05060 0630 50

O~ O] .
O ZiO : : Q;O. . O
OO anooooaoo O @OO 0" 0O OHPF

<

2h

[
»

3'd DualSPHysics Users Workhop, 13-15 November 2017, Parma (lItaly)

2.2. Neighbour list approaches

Cell-linked List (CLL)

« The computational domain is divided in cells of side 2h (cut-off limit).
 Particles are stored according to the cell they belong to.

« So each particle only looks for its potential neighbours in the adjacent cells.

o 0.0 .
_____________ OLOO0 2 9Y 2“0 0 iQOr\ 02024 In this example:
0P 00 QOID 00° 00 0.0 odo%0%

000 141 Poten_tial neighbours
O 00 (gray particles)

3'd DualSPHysics Users Workhop, 13-15 November 2017, Parma (lItaly)

2.2. Neighbour list approaches

Cell-linked List (CLL)

« The computational domain is divided in cells of side 2h (cut-off limit).
 Particles are stored according to the cell they belong to.
« So each particle only looks for its potential neighbours in the adjacent cells.

In this example:

141 Potential neighbours
(gray particles)

47 real neighbours
(dark gray particles)

3'd DualSPHysics Users Workhop, 13-15 November 2017, Parma (lItaly)

2.2. Neighbour list approaches

Verlet List

« The computational domain is divided in cells of side 2h (cut-off limit).
 Particles are stored according to the cell they belong to.

« So each particle only looks for its potential neighbours in the adjacent cells.

« Array of real neighbours is created for each particle.

Array with real
neighbours of...

I

. 3
[}

1 dz
I

I

as

as

by

b,

bs
C1

C2

C3

Cq

dx

dz

00 ~~00
RO 0P .

oooqooooodo Ooo<,f>o o 80 Vaolele
00 g0
«— —

3'd DualSPHysics Users Workhop, 13-15 November 2017, Parma (lItaly)

particle a

particle b

particle ¢

particle d

2.2. Neighbour list approaches

Improved Verlet List (VL)

* Ah is calculated in the same way as in VL. but the number of steps the list is kept
(X instead of C) is only tentative.

« The constant v=1 (instead of 1.2) is used because no extra distance is necessary.
« The same list can be used for several time steps.

Ah=V(2-V 55 C-dt)

Vnax- Maximum velocity
C: time steps that list is fixed
dt: physical time for one time step

V: constant to remove inaccuracies
in calculations

3'd DualSPHysics Users Workhop, 13-15 November 2017, Parma (lItaly)

2.2. Neighbour list approaches

The best Neighbour List approach is...

Computational Memory requirements
runtime

CLL (Cell-linked list) fast minimum

. : the fastest very heavy
Yy (penEe Vares Ly (only 6% faster than CLL) (30 times more than CLL)
VL (classical Verlet list) the slowest the most inefficient

D

DualSPHYysics is designed to simulate large number of particles. So that,
Cell-linked list is the best option to be implemented since it provides
the best balance between the performance and the memory usage.

Dominguez JM, Crespo AJC, GOmez-Gesteira M, Marongiu JC. 2011. Neighbour lists in Smoothed
Particle Hydrodynamics. International Journal For Numerical Methods in Fluids, 67(12): 2026-2042.
doi:10.1002/1d.2481.

3'd DualSPHysics Users Workhop, 13-15 November 2017, Parma (ltaly)

Outline

1. Introduction
1.1. Smooth Particle Hydrodynamics
1.2. Why is SPH too slow?
1.3. High Performance Computing (HPC)
1.4. DualSPHysics project

2. DualSPHysics implementation
2.1. Implementation in three steps
2.2. Neighbour list approaches

3. CPU acceleration

4. GPU acceleration
4.1. Parallelization problems in SPH
4.2. GPU optimisations

5. Multi-GPU acceleration
5.1. Dynamic load balancing
5.2. Latest optimisations in Multi-GPU
5.3. Large simulations
5.4. Future improvements

6. New Multi-GPU approach

3'd DualSPHysics Users Workhop, 13-15 November 2017, Parma (lItaly)

3. CPU acceleration

Previous ideas:
SPH is a Lagrangian model so particles are moving during simulation.

Each time step NL sorts particles (data arrays) to improve the memory access
in Pl stage since the access pattern is more regular and efficient.

Another advantage is the ease to identify the particles that belongs to a cell by
using a range since the first particle of each cell is known.

Four optimizations have been applied to DualSPHysics:

« Applying symmetry to particle-particle interaction.
 Splitting the domain into smaller cells.

« Using SSE instructions.

« Multi-core implementation using OpenMP.

Dominguez JM, Crespo AJC and GoOmez-Gesteira M. 2013. Optimization strategies for CPU and GPU
implementations of a smoothed particle hydrodynamics method. Computer Physics Communications, 184(3):
617-627

3'd DualSPHysics Users Workhop, 13-15 November 2017, Parma (lItaly)

3. CPU acceleration

Testcase for results

« Dam break flow impacting on a structure (experiment of Yeh and Petroff at the
University of Washington).

» Physical time of simulation is 1.5 seconds.

Obstacle

A

Time: 0.3 s Time: 05s
040m

.

0.45m 0.40 m
030 m

4
v
L)
v

0.90m 0.12m 0.58 m

A
f)_ Time: 0.8 s Time: 1.2 s

0.67m

1M particles - Velocity

Time: 0.44 s

Video link:
https://youtu.be/ OFsAVuwxaA

https://youtu.be/_OFsAVuwxaA

3. CPU acceleration

Speedup for 300k particles applying
all optimizations

Speedup
10.25x%

Hardware and configuration for results

11.0

10.0

9.0

8.0

7.0

6.0

5.0

4.0

3.0

2.0

1.0

300k particles

B OpenMP (8 threads)
m Cells 2h/2
B SSE instructions

B Symmetry

» Hardware: Intel® Core ™ {7 940 at 2.93 GHz (4 physical cores, 8 logical cores
with Hyper-threading), with 6 GB of DDR3 RAM memory at 1333 MHz.

» Operating system: Ubuntu 10.10 64-bit.

« Compiler: GCC 4.4.5 (compiling with the option —0O3).

Outline

1. Introduction
1.1. Smooth Particle Hydrodynamics
1.2. Why is SPH too slow?
1.3. High Performance Computing (HPC)
1.4. DualSPHysics project

2. DualSPHysics implementation
2.1. Implementation in three steps
2.2. Neighbour list approaches

3. CPU acceleration

4. GPU acceleration
4.1. Parallelization problems in SPH
4.2. GPU optimisations

5. Multi-GPU acceleration
5.1. Dynamic load balancing
5.2. Latest optimisations in Multi-GPU
5.3. Large simulations
5.4. Future improvements

New Multi-GPU approach
7. DualSPHysics applications

3'd DualSPHysics Users Workhop, 13-15 November 2017, Parma (lItaly)

4. GPU acceleration

Full GPU implementation

« DualSPHysics was implemented using the CUDA programming language to run
SPH method on Nvidia GPUEs.

* GPU is used in all steps (Neighbour List, Particle Interaction and System Update).
» This approach is the most efficient since:
« All particle data is kept in GPU memory and the transfers CPU-GPU are removed.

» Neighbour List and System Update are parallelized, obtaining a speedup also in this
part of the code.

[..) Initial Data
‘ Initial Data

A)
—~ ~ CPU-GPU
Neighbour List iy
| (NL) GPU
N\/ N\ = Neighbour List
|‘/ bata transw‘er-\| /./ (NL)
_cPu-GPU \
. GPU \Z
Particle \"'\.
L\‘Ih.terat:.t.lg.ﬁ _{.P.I.) Particle System
— = —_—, Interaction (PI) |::> Update (SU)
System

(Data é-;-;nsfe-é'\ N
e)T)| Update (su) J

Data transfer
GPU-CPU

-

Save Data |

\ (occasionally) Save Data
{_ y.

(occasionally)

e

3'd DualSPHysics Users Workhop, 13-15 November 2017, Parma (lItaly)

4. GPU acceleration

GPU implementation

DualSPHysics was implemented using the CUDA programming language to run SPH
method on Nvidia GPUs.

Important: An efficient and full use of the capabilities of the GPUs is not
straightforward. It is necessary to know and to take into account the details of the
GPU architecture and the CUDA programming model.

Differences regarding the CPU implementation:

« Each GPU thread calculates the interaction between a target particle and its
neighbours.

« The symmetry is not used in particle interaction because it cannot be applied
efficiently on GPU.

3'd DualSPHysics Users Workhop, 13-15 November 2017, Parma (lItaly)

4.1. Parallelization problems in SPH

Problems in Particle Interaction step
These problems appears since each thread has to interact with different neighbours.

« Code divergence:

GPU threads are grouped into sets of 32 (warps) which execute the same operation
simultaneously. When there are different operations in one warp these operations are
executed sequentially, giving rise to a significant loss of efficiency.

« No coalescent MEMOry acCesses.

The global memory of the GPU is accessed in blocks of 32, 64 or 128 bytes, so the number
of accesses to satisfy a warp depends on how grouped data are. In SPH a regular memory
access is not possible because the particles are moved each time step.

 No balanced workload:

Warps are executed in blocks of threads. To execute a block some resources are assigned
and they will not be available for other blocks till the end of the execution. In SPH the
number of interactions is different for each particle so one thread can be under execution,
keeping the assigned resources, while the rest of threads have finished.

3'd DualSPHysics Users Workhop, 13-15 November 2017, Parma (lItaly)

4.2. GPU optimisations

Five optimizations have been applied to DualSPHysics to avoid or
minimize the problems previously described.

Maximizing the occupancy of GPU.

Reducing global memory accesses.

Simplifying the neighbour search.

Adding a more specific CUDA function of interaction.
Division of the domain into smaller cells.

Dominguez JM, Crespo AJC and Gomez-Gesteira M. 2013. Optimization strategies for CPU and
GPU implementations of a smoothed particle hydrodynamics method. Computer Physics
Communications, 184(3): 617-627

3'd DualSPHysics Users Workhop, 13-15 November 2017, Parma (lItaly)

4.2. GPU optimisations

Testcase for results

« Dam break flow impacting on a structure.
» Simulating 1.5 seconds of physical time.

Hardware for results

Number of cores | Processor | Memory | Compute
clock space capability

Intel Xeon X5500 2.67 GHz

Tesla 1060 240 1.30 GHz 4 GB 1.3
GTX 480 480 140 GHz 1.5GB 2.0
GTX 680 1536 1.14 GHz 2GB 3.0
Tesla K20 2496 0.71 GHz 5GB 3.5
GTX Titan 2688 0.88 GHz 6 GB 3.5

4.2. GPU optimisations

Computational runtimes (in seconds) using GTX 480 for different GPU
iImplementations (partial, full and optimized) when simulating 500,000

particles.

Partial GPU
Full GPU is 1.26x
Full GPU faster than Partial
GPU.
Optimized GPU
Optimized GPU is
Optimized GPU Full GPU Partial GPU 212x faster than
mNL 64.89 58.30 281.62 .
mPIl 852.46 1498.50 1496.78 Partlal GPU.
mSuU 16.78 11.44 198.92
w Data transfer 204.97

4.2.

10

Runtime (h)

GPU optimisations

Runtime for CPU and different
GPU cards.

=== CPU 8 cores
e GTX 480
e— GTX 680

0 4,000,000

GTX Titan

=== CPU Single-core

8,000,000

After optimising the performance of DualSPHysics on CPU and GPU...

12,000,000

Speedups of GPU against CPU

simulating 1 million particles.

150
120
90
60
30
0
GTX GTX Tesla GTX
480 680 K20 Titan
B vs CPU 8 cores 13 16 17 24
B vs CPU Single-core 82 102 105 149

The most powerful GPU (GTX Titan) is 149 times faster than CPU (single core execution)

and 24 times faster than the CPU using all 8 cores.

3'd DualSPHysics Users Workhop, 13-15 November 2017, Parma (ltaly)

4.2.

Runtime (h)

10

GPU optimisations

Runtime for CPU and different
GPU cards.
150

Speedups of GPU against CPU
simulating 1 million particles.

//

120
—

- i | Titan X is 3.3 times faster than GTX Titan

L using single precision

Tesla P100 is 5.3 times faster than GTX Titan
H using double precision

GTX
Titan

24

105

149

]
]
]
]
U GTX Titan M vs CPU Single-core 82 102
0 12,000,000
N

4,000,000 8,000,000

After optimising the performance of DualSPHysics on CPU and GPU...

The most powerful GPU (GTX Titan) is 149 times faster than CPU (single core execution)

and 24 times faster than the CPU using all 8 cores.

3'd DualSPHysics Users Workhop, 13-15 November 2017, Parma (lItaly)

4.2. GPU optimisations

The simulation of real cases implies huge domains with a high resolution, which
implies simulating tens or hundreds of million particles.

The use of one GPU presents important limitations:
- Maximum number of particles depends on the memory size of GPU.
- Time of execution increases rapidly with the number of particles.

Maximum number of particles (millions) Runtime (hours)
40 20

= GTX480

32 16 — GTX 6§0
GTXTitan
24 12
16 8
3 4
. 0
0

0 2 4 6 8 10 12 14 16 18 20
GTX480 GTX 680 TeslaK20 TeslaM2090 GTXTitan . -
Particles (millions)

3'd DualSPHysics Users Workhop, 13-15 November 2017, Parma (ltaly)

Outline

1. Introduction
1.1. Smooth Particle Hydrodynamics
1.2. Why is SPH too slow?
1.3. High Performance Computing (HPC)
1.4. DualSPHysics project

2. DualSPHysics implementation
2.1. Implementation in three steps
2.2. Neighbour list approaches

3. CPU acceleration

4. GPU acceleration
4.1. Parallelization problems in SPH
4.2. GPU optimisations

5. Multi-GPU acceleration
5.1. Dynamic load balancing
5.2. Latest optimisations in Multi-GPU
5.3. Large simulations
5.4. Future improvements

6. New Multi-GPU approach

3'd DualSPHysics Users Workhop, 13-15 November 2017, Parma (lItaly)

5. Multi-GPU implementation

MPI is used to combine resources of multiple machines connected via network.

The physical domain of the simulation is divided among the different MPI processes.
Each process only needs to assign resources to manage a subset of the total amount of
particles for each subdomain.

CPU CPU CPU
6 cores 6 cores

OpenMP 6 cores
HER « HER « HER
(] | |

GPU

CUDA 480 cores

Process 2

MPI

3'd DualSPHysics Users Workhop, 13-15 November 2017, Parma (ltaly)

5. Multi-GPU implementation

The use of MPI implies an overcost:
- Communication: Time dedicated to the interchange of data between processes.
- Synchronization: All processes must wait for the slowest one.

Solutions:

- Overlapping between force computation and communications: while data is
transferred between processes, each process can compute the force interactions among its
own particles. In the case of GPU, the CPU-GPU transfers can also be overlapped with
computation using streams and pinned memory.

- Load balancing. A dynamic load balancing is applied to minimise the difference
between the execution times of each process.

3'd DualSPHysics Users Workhop, 13-15 November 2017, Parma (lItaly)

5. Multi-GPU implementation

Dynamic load balancing

Due to the nature Lagrangian of the SPH method, is necessary to balance the load
throughout the simulation.

FIRST approach according to the number of fluid particles

The number of particles must be redistributed after some time steps to get the
workload balanced among the processes and minimise the synchronisation time.

SECOND approach according to the required computation time of each device

Enables the adaptation of the code to the features of a heterogeneous cluster
achieving a better performance.

3'd DualSPHysics Users Workhop, 13-15 November 2017, Parma (lItaly)

GPUs: 3 x GTX480 '."i:..%‘m i

MPI: Dynamic Balancing-Np cpu AR opu
Particles: 6 Millions DualSPHysics
Steps: 42,624

Runtime: 2.6 hours

Time: 0.53 s

5.1. Dynamic load balancing

Results using one GPU and several GPUs with dynamic load balancing

GTX 285

GTX 480

GTX 680

3 GPUs (bal. particles)

3 GPUs (bal. time)

o

i 1 1
runtime (h) 0 >

GTX GTX D¢

Hardware:

630 480 285

5.1. Dynamic load balancing

Results using one GPU and several GPUs with dynamic load balancing

 Using the fastest GPU (GTX 680) 5.8 hours
 Using three different GPUs
According to the number of fluid particles 4.6 hours
According to the required computation time 2.8 hours

The second approach is 1.7x faster than first approach
and 2.1x faster than one GPU.

GTX 285

GTX 480

GTX 680

3 GPUs (bal. particles)

3 GPUs (bal. time)

5.2. Latest optimisations in Multi-GPU

Testcase for results

« Dam break flow.
* Physical time of simulation is 0.6 seconds.
» The number of used particles varies from 1M to 1,024M particles.

0.26 m

Time: 0.3 s

5.2. Latest optimisations in Multi-GPU

Results of efficiency

The simulations were carried out in the Barcelona Supercomputing Center BSC-
CNS (Spain). This system is built with 256 GPUs Tesla M2090.

All the results presented here were obtained single precision and Error-correcting
code memory (ECC) disabled.

Barcelona
Supercomputing

Center
Centro Nacional de Supercomputacion

Activity at BARCELONA SUPERCOMPUTING CENTER:
“Massively parallel Smoothed Particle Hydrodynamics scheme using GPU clusters”

3'd DualSPHysics Users Workhop, 13-15 November 2017, Parma (lItaly)

5.2. Latest optimisations in Multi-GPU

Barcelona
Supercomputing
Center

Efficiency close to 100% simulating 4M/GPU @ Ceonter
with 128 GPUs Tesla M2090 of BSC. Time: 0.3 s

This is possible because the time dedicated to
tasks exclusive of the multi-GPU executions
(communication between processes, CPU-GPU
transfers and load balancing) is minimum.

Speedup - Weak scaling

128 1M/Gpu
I T(N,.,)-N
4M/Gpu S(N) _ (ref)
96 8M/Gpu T(N)) Nref
......... |dea|
64 E(N) = 7S(N)
N
32
0
0 32 64 96 128

GPUs

5.2. Latest optimisations in Multi-GPU

Percentage of time dedicated to tasks exclusive of the multi-GPU
executions (including the latest improvements).

6%
—— 1M/gpu (new)

— 4M/gpu (new)
——8M/gpu (new)

(
f

4%

2%

0%

0 32 64 96 128
GPUs

5.3. Large simulations

Simulation of 1 billion SPH particles

Large wave interaction with oil rig using 10"9 particles

h i me
11.95m»

25.10m

6.10m

S

12.50m

dp=6cm, h=9cm

np = 1,015,896,172 particles

nf = 1,004,375,142 fluid particles
physical time= 12 sec

of steps = 237,065 steps
runtime = 79.1 hours

using 64 GPUs Tesla M2090 of the BSC-CNS

3'd DualSPHysics Users Workhop, 13-15 November 2017, Parma (ltaly)

GPUs: 64x M2090 (BSC)

MPI: Dynamic balancing

Algorithm: Verlet & Wendland

Particles: 1,015 Millions I
Steps: 137,055

Runtime: 79.1 hours
Physical time: 12 seconds

Video link:
https://youtu.be/BE8MP9E75D08

;\ - A ; N : ‘ T \'\Q'
.L..‘ B\ L ‘ .
i B Time: 3.36 s
g
y
i,
’ , =7 1\\; AL
) 4 e ! G g Dion ™
q - 0 T
= ;& g -
- gyt® oL
B 0 - N N —e .)
Bsc : 0 D . | g E
&2 ~ 3 2 M .

https://youtu.be/B8mP9E75D08

5.3. Large simulations

Simulation of a real case
Using 3D geometry of the beach Itzurun in Zumaia-Guiptzcoa (Spain) in Google Earth

32 x M2090 (BSC)

Particles: 265 Millions
Physical time: 60 seconds
Steps: 218,211
Runtime: 246.3 hours

Agen

eon

3'd DualSPHysics Users Workhop, 13-15 November 2017, Parma (ltaly)

htt s‘://outu.be-/hDKAI—rRA hEA"
https://youtu.be/kWS6-0Z_jlo

https://youtu.be/nDKlrRA_hEA
https://youtu.be/kWS6-0Z_jIo

5.4. Future improvements

Decomposition in 2D and 3D

* Now only 1D but 2D and 3D will be implemented in the future.

« 1D approach is correct when the domain of simulation is very narrow but this
approach is not well adapted to other domains.

* A 2D and 3D decomposition is necessary for a better distribution of the work load
when using hundreds of GPUs.

Example of the 2D decomposition we are working on

Time: 9.50 s

Time: 0.00 s Time: 2.00 s

3'd DualSPHysics Users Workhop, 13-15 November 2017, Parma (ltaly)

2D decomposition

RdEs

III

s
d

Time: 0.00 s

Outline

1. Introduction
1.1. Smooth Particle Hydrodynamics
1.2. Why is SPH too slow?
1.3. High Performance Computing (HPC)
1.4. DualSPHysics project

2. DualSPHysics implementation
2.1. Implementation in three steps
2.2. Neighbour list approaches

3. CPU acceleration

4. GPU acceleration
4.1. Parallelization problems in SPH
4.2. GPU optimisations

5. Multi-GPU acceleration
5.1. Dynamic load balancing
5.2. Latest optimisations in Multi-GPU
5.3. Large simulations
5.4. Future improvements

6. New Multi-GPU approach

3'd DualSPHysics Users Workhop, 13-15 November 2017, Parma (lItaly)

6. New Multi-GPU approach

Consumers can now easily purchase desktop machines or a single
compute node with 4-8 GPUs for only a few thousand euros.

g

New Multi-GPU code optimized for Multi-GPU machines

CUDA (and OpenMP), not MPI

Only for several GPUs in the same machine
Typical clusters have 2, 4 or 8 GPUs

Simulations with 100-200M particles
120M using 4x GTX Titan (6GB)

6. New Multi-GPU approach

Consumers can now easily purchase desktop machines or a single
compute node with 4-8 GPUs for only a few thousand euros.

For example,
at Universidade de Vigo

2 X CPU:
Intel Xeon E5-2640 v2
8 cores at 2GHz

4 x GPU:
Nvidia Titan
2688 cores at 837Mhz
6GB GDDR5

3'd DualSPHysics Users Workhop, 13-15 November 2017, Parma (ltaly)

6. New Multi-GPU approach

Consumers can now easily purchase desktop machines or a single
compute node with 4-8 GPUs for only a few thousand euros.

$

New Multi-GPU code optimized for Multi-GPU machines

CUDA (and OpenMP), not MPI

Only for several GPUs in the same machine
Typical clusters have 2, 4 or 8 GPUs

Simulations with 100-200M particles
120M using 4x GTX Titan (6GB)

3'd DualSPHysics Users Workhop, 13-15 November 2017, Parma (lItaly)

6. New Multi-GPU approach

....................
..........................
.....................
0000000000000000000
..................

cpv pu
DuaISPHy5|cs \
One GPU card / GPU clusters /esktop/smgle node G\
CPU CPU CPU CPU CPU

6 cores 6 cores

OpenMP 6 cores OpenMP 6 cores
P mnn ad unn fud nnm

=

GPU
CUDA 480 cores

8 cores OpenMP 8 cores
[[[]] [[[]

t 3

GPU

GPU

480 core 480 cores

o

2011-today since 2012 2018
Release of Simulations on To be released as
open-source code Supercomputing open-source code
Centers (BSC)

3'd DualSPHysics Users Workhop, 13-15 November 2017, Parma (ltaly)

6. New Multi-GPU approach

New Multi-GPU code optimized for Multi-GPU machines

Advantages: Drawbacks :
» More portable and easy to use in Linux « Limited number of GPUs (2-8 GPUs)

and Windows Limited size of simulation. Not 10°
« Simpler code and easier to modify particles

* More efficient communication. MPI
overhead was removed.

Does not work in distributed systems

 Not special pre-processing and post-
processing tools

 Updated code. It will include all
capabilities in the last version of
DualSPHysics

3'd DualSPHysics Users Workhop, 13-15 November 2017, Parma (lItaly)

oo DR
DualSPHysics

Environmental
Physics
Technologies

EPH

Vi/deo link:
https://youtu.be/EVSDFRfJToO

"'\

. '\«
) :““ N

https://youtu.be/EvSDFRfJToQ

HPC for SPH methods:
multicore GPU and multiGPU

]

UniversidageVigo
José Dominguez, A. Mokos, B.D. Rogers,

MANCHFSSZEER A.J.C. Crespo and M. Gomez-Gesteira

The University of Manchester

