
HPC for SPH methods:
Multicore, GPU and multiGPU

José Domínguez, A. Mokos, B.D. Rogers,

A.J.C. Crespo and M. Gómez-Gesteira

+

3rd DualSPHysics Users Workhop, 13-15 November 2017, Parma (Italy)

Video link:
https://youtu.be/pnLTWUk6wPc

https://youtu.be/pnLTWUk6wPc

Video link:
https://youtu.be/747v7vi7vho

https://youtu.be/747v7vi7vho

Outline

1. Introduction
1.1. Smooth Particle Hydrodynamics

1.2. Why is SPH too slow?

1.3. High Performance Computing (HPC)

1.4. DualSPHysics project

2. DualSPHysics implementation
2.1. Implementation in three steps

2.2. Neighbour list approaches

3. CPU acceleration

4. GPU acceleration
4.1. Parallelization problems in SPH

4.2. GPU optimisations

5. Multi-GPU acceleration
5.1. Dynamic load balancing

5.2. Latest optimisations in Multi-GPU

5.3. Large simulations

5.4. Future improvements

6. New Multi-GPU approach

3rd DualSPHysics Users Workhop, 13-15 November 2017, Parma (Italy)

PHYSICAL GOVERNING EQUATIONS

LAGRANGIAN DESCRIPTION

(material description)

EULERIAN DESCRIPTION

(spatial description)

COMPUTATIONAL METHODS

GRID-BASED METHODS

MESHFREE METHODS

MESHFREE PARTICLE METHODS

(particle represents a part of

the continuum domain)

SMOOTHED PARTICLE HYDRODYNAMICS

1.1. Smooth Particle Hydrodynamics

3rd DualSPHysics Users Workhop, 13-15 November 2017, Parma (Italy)

SPH method was invented for astrophysics during the seventies, but now it is

applied in many different fields including fluid dynamics and solid mechanics.

Fluid is represented using particles which move according to the governing

dynamics.

Comparing to grid-based methods, SPH interactions are carried out between a

given particle and its moving neighbours. Thus, these neighbours are

unknown since they change at each instant.

1.1. Smooth Particle Hydrodynamics

3rd DualSPHysics Users Workhop, 13-15 November 2017, Parma (Italy)

SPH method was invented for astrophysics during the seventies, but now it is

applied in many different fields including fluid dynamics and solid mechanics.

Fluid is represented using particles which move according to the governing

dynamics.

SPH is particularly suited to describe a variety of free-surface flows:

• Wave propagation over a beach.

• Plunging breakers.

• Wave-structure interactions.

• Solid bodies impacting on

water surface.

• Dam breaks.

1.1. Smooth Particle Hydrodynamics

3rd DualSPHysics Users Workhop, 13-15 November 2017, Parma (Italy)

Drawbacks of SPH:

• SPH presents a high computational cost that increases when increasing the

number of particles.

• The simulation of real problems requires a high resolution which implies

simulating millions of particles.

The time required to simulate a few seconds is too large. One second of

physical time can take several days of calculation.

1.2. Why is SPH too slow?

3rd DualSPHysics Users Workhop, 13-15 November 2017, Parma (Italy)

The SPH method is very expensive in terms of computing time.

300,000 particles

1.5 s (physical time)

Takes more than

15 hours

(execution time)

For example, a simulation of this dam break

1.2. Why is SPH too slow?

3rd DualSPHysics Users Workhop, 13-15 November 2017, Parma (Italy)

The SPH method is very expensive in terms of computing time.

300,000 particles

1.5 s (physical time)

Takes more than

15 hours

(execution time)

For example, a simulation of this dam break

because:

• Each particle interacts

with more than 250

neighbours.

1.2. Why is SPH too slow?

3rd DualSPHysics Users Workhop, 13-15 November 2017, Parma (Italy)

The SPH method is very expensive in terms of computing time.

300,000 particles

1.5 s (physical time)

Takes more than

15 hours

(execution time)

For example, a simulation of this dam break

because:

• Each particle interacts

with more than 250

neighbours.

• ∆t=10-5-10-4 so more

than 16,000 steps are

needed to simulate 1.5 s

of physical time.

1.2. Why is SPH too slow?

3rd DualSPHysics Users Workhop, 13-15 November 2017, Parma (Italy)

Drawbacks of SPH:

• SPH presents a high computational cost that increases when increasing the

number of particles.

• The simulation of real problems requires a high resolution which implies

simulating millions of particles.

The time required to simulate a few seconds is too large. One second of

physical time can take several days of calculation.

IT IS NECESSARY TO USE HPC TECHNIQUES TO REDUCE THESE

COMPUTATION TIMES.

1.2. Why is SPH too slow?

3rd DualSPHysics Users Workhop, 13-15 November 2017, Parma (Italy)

HPC includes multiple techniques of parallel computing and distributed

computing that allow you to execute several operations simultaneously.

The main techniques used to accelerate SPH are:

• OpenMP (Open Multi-Processing)

1.3. High Performance Computing (HPC)

– Model of parallel programming for systems of

shared memory.

– Portable and flexible programming interface

using directives.

– Its implementation does not involve major

changes in the code.

– The improvement is limited by the number of

cores.

OPENMP IS THE BEST OPTION TO OPTIMIZE THE PERFORMANCE

OF THE MULTIPLE CORES OF THE CURRENT CPUS.

Multi-core processor

3rd DualSPHysics Users Workhop, 13-15 November 2017, Parma (Italy)

HPC includes multiple techniques of parallel computing and distributed

computing that allow you to execute several operations simultaneously.

The main techniques used to accelerate SPH are:

• MPI (Message Passing Interface)

– Message-passing library specification for

systems of distributed memory: parallel

computers and clusters.

– Several processes are communicated by calling

routines to send and receive messages.

– The use of MPI is typically combined with

OpenMP in clusters by using a hybrid

communication model.

– Very expensive for a small research group.

MPI IS THE BEST OPTION TO COMBINE THE RESOURCES OF

MULTIPLE MACHINES CONNECTED VIA NETWORK.

MPI cluster

1.3. High Performance Computing (HPC)

3rd DualSPHysics Users Workhop, 13-15 November 2017, Parma (Italy)

HPC includes multiple techniques of parallel computing and distributed

computing that allow you to execute several operations simultaneously.

The main techniques used to accelerate SPH are:

• GPGPU (General-Purpose Computing on Graphics Processing Units)

– It involves the study and use of parallel

computing ability of a GPU to perform general

purpose programs.

– New general purpose programming languages

and APIs (such as Brook and CUDA) provide

an easier access to the computing power of

GPUs.

– New implementation of the algorithms used in

CPU is necessary for an efficient use in GPU.

GPU

1.3. High Performance Computing (HPC)

3rd DualSPHysics Users Workhop, 13-15 November 2017, Parma (Italy)

Advantages: GPUs provide a high calculation power with very low cost and without

expensive infrastructures.

Drawbacks: An efficient and full use of the capabilities of the GPUs is not

straightforward.

Graphics Processing Units (GPUs)

• powerful parallel processors

• designed for graphics rendering

• their computing power has increased

much faster than CPUs.

1.3. High Performance Computing (HPC)

Theoretical GFLOP/s at base clock CUDA Programming Guide v8.0

3rd DualSPHysics Users Workhop, 13-15 November 2017, Parma (Italy)

GPUs are an accessible tool to accelerate SPH,

all numerical methods in CFD and any computational method

http://www.nvidia.com

Why GPUs?

1.3. High Performance Computing (HPC)

3rd DualSPHysics Users Workhop, 13-15 November 2017, Parma (Italy)

http://www.nvidia.com/

https://www.top500.org/lists/2017/06/

TOP500 LIST – JUNE 2017Why GPUs?

1.3. High Performance Computing (HPC)

3rd DualSPHysics Users Workhop, 13-15 November 2017, Parma (Italy)

https://www.top500.org/lists/2016/11/

https://www.top500.org/green500/lists/2017/06/

GREEN500 LIST – JUNE 2016Why GPUs?

1.3. High Performance Computing (HPC)

3rd DualSPHysics Users Workhop, 13-15 November 2017, Parma (Italy)

https://www.top500.org/green500/lists/2016/06/

SPHysics is a numerical model SPH developed for the study of free-surface problems.

It is a code written in Fortran90 with numerous options (different kernels, several

boundary conditions,…), which had already demonstrated high accuracy in several

validations with experimental results… but it is too slow to apply to large domains.

The DualSPHysics code was created starting from SPHysics.

1.4. DualSPHysics project

3rd DualSPHysics Users Workhop, 13-15 November 2017, Parma (Italy)

Why two implementations?

This code can be used on machines with GPU and without GPU.

It allows us to make a fair and realistic comparison between CPU and GPU.

Some algorithms are complex and it is easy to make errors difficult to detect. So they are

implemented twice and we can compare results.

It is easier to understand the code in CUDA when you can see the same code in C++.

Drawback: It is necessary to implement and to maintain two different codes.

First version in late 2009.

It includes two implementations:

- CPU: C++ and OpenMP.

- GPU: CUDA.

Both options optimized for the best

performance of each architecture.

1.4. DualSPHysics project

3rd DualSPHysics Users Workhop, 13-15 November 2017, Parma (Italy)

Pre-processing
tools

DualSPHysics
solver

Post-processing
tools

Geometry (cad, 3ds,

dwg, stl, vtk…)

Configuration
(parameters, motion...)

Visualization
(videos, images, graphs)

Result analysis
(Data in csv, xls, m...)

DSPH project includes:

Pre-processing tools:

• Converts geometry into

particles.

• Provides configuration

for simulation.

DualSPHysics solver:

• Runs simulation using

SPH particles.

• Obtains data simulation

for time intervals.

Post-processing tools:

• Calculates magnitudes using

particle data.

• Generates images and

videos starting form SPH

particles.

1.4. DualSPHysics project

3rd DualSPHysics Users Workhop, 13-15 November 2017, Parma (Italy)

www.dual.sphysics.org

1.4. DualSPHysics project

3rd DualSPHysics Users Workhop, 13-15 November 2017, Parma (Italy)

and many contributors

www.dual.sphysics.org

1.4. DualSPHysics project

3rd DualSPHysics Users Workhop, 13-15 November 2017, Parma (Italy)

People working on DualSPHysics project:

Prof. Moncho Gómez Gesteira

Dr Alejandro J.C. Crespo

Dr Jose M. Domínguez

Dr José González-Cao

Orlando G. Feal

Andrés Vieira

Dr Benedict D. Rogers

Dr Athanasios Mokos

Dr Georgios Fourtakas

Prof. Peter Stansby

Alex Chow

Annelie Baines

Dr Renato Vacondio

Prof. Paolo Mignosa

Dr Corrado Altomare

Dr Tomohiro Suzuki

Prof. Rui Ferreira

Dr Ricardo Canelas

Dr Xavier Gironella

Andrea Marzeddu

1.4. DualSPHysics project

3rd DualSPHysics Users Workhop, 13-15 November 2017, Parma (Italy)

It has been downloaded and used by researchers but also by companies:

NASA JSC, BAE Systems, Volkswagen AG, McLaren Racing Ltd, Forum NOKIA,

NVIDIA, AECOM, HDR Engineering, ABPmer, DLR, Maine Marine Composites,

CFD-NUMERICS, BMT Group, Oak Ridge National Laboratory, Rainpower

Norway, American Wave Machines,, National Renewable Energy Laboratory in

U.S.A., Atria Power Corporation Ltd., Global Hydro Energy, Carnegie Wave

Energy Ltd, etc.

1.4. DualSPHysics project

3rd DualSPHysics Users Workhop, 13-15 November 2017, Parma (Italy)

Outline

1. Introduction
1.1. Smooth Particle Hydrodynamics

1.2. Why is SPH too slow?

1.3. High Performance Computing (HPC)

1.4. DualSPHysics project

2. DualSPHysics implementation
2.1. Implementation in three steps

2.2. Neighbour list approaches

3. CPU acceleration

4. GPU acceleration
4.1. Parallelization problems in SPH

4.2. GPU optimisations

5. Multi-GPU acceleration
5.1. Dynamic load balancing

5.2. Latest optimisations in Multi-GPU

5.3. Large simulations

5.4. Future improvements

6. New Multi-GPU approach

3rd DualSPHysics Users Workhop, 13-15 November 2017, Parma (Italy)

For the implementation of SPH, the code is organised in 3 main steps that are repeated

each time step till the end of the simulation.

Initial Data

Neighbour List
(NL)

Particle
Interaction (PI)

System
Update (SU)

Save Data
(occasionally)

Neighbour list (NL):

Particles are grouped in cells and reordered to

optimise the next step.

Particle interactions (PI):

Forces between particles are computed, solving

momentum and continuity equations.

This step takes more than 95% of execution

time.

System update (SU):

Starting from the values of computed forces, the

magnitudes of the particles are updated for the

next instant of the simulation.

2.1. Implementation in three steps

3rd DualSPHysics Users Workhop, 13-15 November 2017, Parma (Italy)

Particle Interaction (PI) consumes more than

95% of the execution time. However, its

implementation and performance depends

greatly on the Neighbour List (NL).

NL step creates the neighbour list to

optimise the search for neighbours during

particle interaction.

2.2. Neighbour list approaches

Initial Data

Neighbour List
(NL)

Particle
Interaction (PI)

System
Update (SU)

Save Data
(occasionally)

Two approaches were studied:

• Cell-linked list (CLL)

• Verlet list (VL)

• Classical Verlet List (VLC)

• Improved Verlet List (VLX)

3rd DualSPHysics Users Workhop, 13-15 November 2017, Parma (Italy)

Cell-linked List (CLL)

• The computational domain is divided in cells of side 2h (cut-off limit).

• Particles are stored according to the cell they belong to.

• So each particle only looks for its potential neighbours in the adjacent cells.

2.2. Neighbour list approaches

3rd DualSPHysics Users Workhop, 13-15 November 2017, Parma (Italy)

Cell-linked List (CLL)

• The computational domain is divided in cells of side 2h (cut-off limit).

• Particles are stored according to the cell they belong to.

• So each particle only looks for its potential neighbours in the adjacent cells.

2h

In this example:

2h

2.2. Neighbour list approaches

3rd DualSPHysics Users Workhop, 13-15 November 2017, Parma (Italy)

Cell-linked List (CLL)

• The computational domain is divided in cells of side 2h (cut-off limit).

• Particles are stored according to the cell they belong to.

• So each particle only looks for its potential neighbours in the adjacent cells.

2h

In this example:

141 Potential neighbours

(gray particles)

2h

2.2. Neighbour list approaches

3rd DualSPHysics Users Workhop, 13-15 November 2017, Parma (Italy)

Cell-linked List (CLL)

• The computational domain is divided in cells of side 2h (cut-off limit).

• Particles are stored according to the cell they belong to.

• So each particle only looks for its potential neighbours in the adjacent cells.

In this example:

141 Potential neighbours

(gray particles)

47 real neighbours

(dark gray particles)2h

2h

2h

2.2. Neighbour list approaches

3rd DualSPHysics Users Workhop, 13-15 November 2017, Parma (Italy)

Verlet List

• The computational domain is divided in cells of side 2h (cut-off limit).

• Particles are stored according to the cell they belong to.

• So each particle only looks for its potential neighbours in the adjacent cells.

• Array of real neighbours is created for each particle.

a1

a2

a3

a4

b1

b2

b3

c1

c2

c3

c4

d1

d2

...

Array with real
neighbours of...

particle a

particle b

particle c

particle d

2.2. Neighbour list approaches

3rd DualSPHysics Users Workhop, 13-15 November 2017, Parma (Italy)

Improved Verlet List (VLX)

• ∆h is calculated in the same way as in VLC but the number of steps the list is kept

(X instead of C) is only tentative.

• The constant v=1 (instead of 1.2) is used because no extra distance is necessary.

• The same list can be used for several time steps.

∆h=v(2·Vmax·C·dt)

Vmax: maximum velocity

C: time steps that list is fixed

dt: physical time for one time step

v: constant to remove inaccuracies

in calculations

2.2. Neighbour list approaches

3rd DualSPHysics Users Workhop, 13-15 November 2017, Parma (Italy)

The best Neighbour List approach is…

DualSPHysics is designed to simulate large number of particles. So that,

Cell-linked list is the best option to be implemented since it provides

the best balance between the performance and the memory usage.

Computational

runtime

Memory requirements

CLL (Cell-linked list) fast minimum

VLX (improved Verlet list)
the fastest

(only 6% faster than CLL)

very heavy
(30 times more than CLL)

VLC (classical Verlet list) the slowest the most inefficient

2.2. Neighbour list approaches

Domínguez JM, Crespo AJC, Gómez-Gesteira M, Marongiu JC. 2011. Neighbour lists in Smoothed

Particle Hydrodynamics. International Journal For Numerical Methods in Fluids, 67(12): 2026-2042.

doi:10.1002/fld.2481.

3rd DualSPHysics Users Workhop, 13-15 November 2017, Parma (Italy)

Outline

1. Introduction
1.1. Smooth Particle Hydrodynamics

1.2. Why is SPH too slow?

1.3. High Performance Computing (HPC)

1.4. DualSPHysics project

2. DualSPHysics implementation
2.1. Implementation in three steps

2.2. Neighbour list approaches

3. CPU acceleration

4. GPU acceleration
4.1. Parallelization problems in SPH

4.2. GPU optimisations

5. Multi-GPU acceleration
5.1. Dynamic load balancing

5.2. Latest optimisations in Multi-GPU

5.3. Large simulations

5.4. Future improvements

6. New Multi-GPU approach

3rd DualSPHysics Users Workhop, 13-15 November 2017, Parma (Italy)

Previous ideas:

SPH is a Lagrangian model so particles are moving during simulation.

Each time step NL sorts particles (data arrays) to improve the memory access

in PI stage since the access pattern is more regular and efficient.

Another advantage is the ease to identify the particles that belongs to a cell by

using a range since the first particle of each cell is known.

Four optimizations have been applied to DualSPHysics:

• Applying symmetry to particle-particle interaction.

• Splitting the domain into smaller cells.

• Using SSE instructions.

• Multi-core implementation using OpenMP.

3. CPU acceleration

Domínguez JM, Crespo AJC and Gómez-Gesteira M. 2013. Optimization strategies for CPU and GPU

implementations of a smoothed particle hydrodynamics method. Computer Physics Communications, 184(3):

617-627

3rd DualSPHysics Users Workhop, 13-15 November 2017, Parma (Italy)

Testcase for results

• Dam break flow impacting on a structure (experiment of Yeh and Petroff at the

University of Washington).

• Physical time of simulation is 1.5 seconds.

3. CPU acceleration

3rd DualSPHysics Users Workhop, 13-15 November 2017, Parma (Italy)

Testcase: Dam break flow impacting on a structure

PhD Thesis defense, November 7, 2014, Ourense (Spain)

Video link:
https://youtu.be/_OFsAVuwxaA

https://youtu.be/_OFsAVuwxaA

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

300k particles

OpenMP (8 threads)

Cells 2h/2

SSE instructions

Symmetry

Hardware and configuration for results

• Hardware: Intel® Core ™ i7 940 at 2.93 GHz (4 physical cores, 8 logical cores

with Hyper-threading), with 6 GB of DDR3 RAM memory at 1333 MHz.

• Operating system: Ubuntu 10.10 64-bit.

• Compiler: GCC 4.4.5 (compiling with the option –O3).

Speedup for 300k particles applying

all optimizations

Speedup

10.25x

3. CPU acceleration

3rd DualSPHysics Users Workhop, 13-15 November 2017, Parma (Italy)

Outline

1. Introduction
1.1. Smooth Particle Hydrodynamics

1.2. Why is SPH too slow?

1.3. High Performance Computing (HPC)

1.4. DualSPHysics project

2. DualSPHysics implementation
2.1. Implementation in three steps

2.2. Neighbour list approaches

3. CPU acceleration

4. GPU acceleration
4.1. Parallelization problems in SPH

4.2. GPU optimisations

5. Multi-GPU acceleration
5.1. Dynamic load balancing

5.2. Latest optimisations in Multi-GPU

5.3. Large simulations

5.4. Future improvements

6. New Multi-GPU approach

7. DualSPHysics applications

3rd DualSPHysics Users Workhop, 13-15 November 2017, Parma (Italy)

Full GPU implementation

• DualSPHysics was implemented using the CUDA programming language to run

SPH method on Nvidia GPUs.

• GPU is used in all steps (Neighbour List, Particle Interaction and System Update).

• This approach is the most efficient since:

• All particle data is kept in GPU memory and the transfers CPU-GPU are removed.

• Neighbour List and System Update are parallelized, obtaining a speedup also in this

part of the code.

Initial Data

Neighbour List
(NL)

Particle
Interaction (PI)

System
Update (SU)

Save Data
(occasionally)

Data transfer
CPU-GPU

Data transfer
GPU-CPU

GPU

4. GPU acceleration

3rd DualSPHysics Users Workhop, 13-15 November 2017, Parma (Italy)

GPU implementation

DualSPHysics was implemented using the CUDA programming language to run SPH

method on Nvidia GPUs.

Important: An efficient and full use of the capabilities of the GPUs is not

straightforward. It is necessary to know and to take into account the details of the

GPU architecture and the CUDA programming model.

Differences regarding the CPU implementation:

• Each GPU thread calculates the interaction between a target particle and its

neighbours.

• The symmetry is not used in particle interaction because it cannot be applied

efficiently on GPU.

4. GPU acceleration

3rd DualSPHysics Users Workhop, 13-15 November 2017, Parma (Italy)

Problems in Particle Interaction step

These problems appears since each thread has to interact with different neighbours.

• Code divergence:

GPU threads are grouped into sets of 32 (warps) which execute the same operation

simultaneously. When there are different operations in one warp these operations are

executed sequentially, giving rise to a significant loss of efficiency.

• No coalescent memory accesses:

The global memory of the GPU is accessed in blocks of 32, 64 or 128 bytes, so the number

of accesses to satisfy a warp depends on how grouped data are. In SPH a regular memory

access is not possible because the particles are moved each time step.

• No balanced workload:

Warps are executed in blocks of threads. To execute a block some resources are assigned

and they will not be available for other blocks till the end of the execution. In SPH the

number of interactions is different for each particle so one thread can be under execution,

keeping the assigned resources, while the rest of threads have finished.

4.1. Parallelization problems in SPH

3rd DualSPHysics Users Workhop, 13-15 November 2017, Parma (Italy)

Five optimizations have been applied to DualSPHysics to avoid or

minimize the problems previously described.

• Maximizing the occupancy of GPU.

• Reducing global memory accesses.

• Simplifying the neighbour search.

• Adding a more specific CUDA function of interaction.

• Division of the domain into smaller cells.

4.2. GPU optimisations

Domínguez JM, Crespo AJC and Gómez-Gesteira M. 2013. Optimization strategies for CPU and

GPU implementations of a smoothed particle hydrodynamics method. Computer Physics

Communications, 184(3): 617-627

3rd DualSPHysics Users Workhop, 13-15 November 2017, Parma (Italy)

Testcase for results

• Dam break flow impacting on a structure.

• Simulating 1.5 seconds of physical time.

Hardware for results

Number of cores Processor

clock

Memory

space

Compute

capability

Intel Xeon X5500 1-8 2.67 GHz

Tesla 1060 240 1.30 GHz 4 GB 1.3

GTX 480 480 1.40 GHz 1.5 GB 2.0

GTX 680 1536 1.14 GHz 2 GB 3.0

Tesla K20 2496 0.71 GHz 5 GB 3.5

GTX Titan 2688 0.88 GHz 6 GB 3.5

4.2. GPU optimisations

3rd DualSPHysics Users Workhop, 13-15 November 2017, Parma (Italy)

Computational runtimes (in seconds) using GTX 480 for different GPU

implementations (partial, full and optimized) when simulating 500,000

particles.

Full GPU is 1.26x

faster than Partial

GPU.

Optimized GPU is

2.12x faster than

Partial GPU.

4.2. GPU optimisations

3rd DualSPHysics Users Workhop, 13-15 November 2017, Parma (Italy)

Runtime for CPU and different

GPU cards.

0

2

4

6

8

10

0 4,000,000 8,000,000 12,000,000

R
u

n
ti

m
e

 (
h

)

N

CPU Single-core

CPU 8 cores

GTX 480

GTX 680

GTX Titan

GTX
480

GTX
680

Tesla
K20

GTX
Titan

vs CPU 8 cores 13 16 17 24

vs CPU Single-core 82 102 105 149

0

30

60

90

120

150

Speedups of GPU against CPU

simulating 1 million particles.

After optimising the performance of DualSPHysics on CPU and GPU...

The most powerful GPU (GTX Titan) is 149 times faster than CPU (single core execution)

and 24 times faster than the CPU using all 8 cores.

4.2. GPU optimisations

3rd DualSPHysics Users Workhop, 13-15 November 2017, Parma (Italy)

Runtime for CPU and different

GPU cards.

0

2

4

6

8

10

0 4,000,000 8,000,000 12,000,000

R
u

n
ti

m
e

 (
h

)

N

CPU Single-core

CPU 8 cores

GTX 480

GTX 680

GTX Titan

GTX
480

GTX
680

Tesla
K20

GTX
Titan

vs CPU 8 cores 13 16 17 24

vs CPU Single-core 82 102 105 149

0

30

60

90

120

150

Speedups of GPU against CPU

simulating 1 million particles.

After optimising the performance of DualSPHysics on CPU and GPU...

The most powerful GPU (GTX Titan) is 149 times faster than CPU (single core execution)

and 24 times faster than the CPU using all 8 cores.

4.2. GPU optimisations

Titan X is 3.3 times faster than GTX Titan

using single precision

Tesla P100 is 5.3 times faster than GTX Titan

using double precision

3rd DualSPHysics Users Workhop, 13-15 November 2017, Parma (Italy)

The simulation of real cases implies huge domains with a high resolution, which

implies simulating tens or hundreds of million particles.

The use of one GPU presents important limitations:

- Maximum number of particles depends on the memory size of GPU.

- Time of execution increases rapidly with the number of particles.

0

8

16

24

32

40

GTX 480 GTX 680 Tesla K20 Tesla M2090 GTX Titan

Maximum number of particles (millions)

0

4

8

12

16

20

0 2 4 6 8 10 12 14 16 18 20

Particles (millions)

Runtime (hours)

GTX 480
GTX 680
GTX Titan

4.2. GPU optimisations

3rd DualSPHysics Users Workhop, 13-15 November 2017, Parma (Italy)

Outline

1. Introduction
1.1. Smooth Particle Hydrodynamics

1.2. Why is SPH too slow?

1.3. High Performance Computing (HPC)

1.4. DualSPHysics project

2. DualSPHysics implementation
2.1. Implementation in three steps

2.2. Neighbour list approaches

3. CPU acceleration

4. GPU acceleration
4.1. Parallelization problems in SPH

4.2. GPU optimisations

5. Multi-GPU acceleration
5.1. Dynamic load balancing

5.2. Latest optimisations in Multi-GPU

5.3. Large simulations

5.4. Future improvements

6. New Multi-GPU approach

3rd DualSPHysics Users Workhop, 13-15 November 2017, Parma (Italy)

GPU
480 cores

GPU
480 cores

OpenMP

CUDA

MPI

CPU
6 cores

GPU
480 cores

CPU
6 cores

CPU
6 cores

MPI is used to combine resources of multiple machines connected via network.

The physical domain of the simulation is divided among the different MPI processes.

Each process only needs to assign resources to manage a subset of the total amount of

particles for each subdomain.

5. Multi-GPU implementation N×

3rd DualSPHysics Users Workhop, 13-15 November 2017, Parma (Italy)

The use of MPI implies an overcost:

- Communication: Time dedicated to the interchange of data between processes.

- Synchronization: All processes must wait for the slowest one.

Solutions:

- Overlapping between force computation and communications: while data is

transferred between processes, each process can compute the force interactions among its

own particles. In the case of GPU, the CPU-GPU transfers can also be overlapped with

computation using streams and pinned memory.

- Load balancing. A dynamic load balancing is applied to minimise the difference

between the execution times of each process.

5. Multi-GPU implementation

3rd DualSPHysics Users Workhop, 13-15 November 2017, Parma (Italy)

Dynamic load balancing

Due to the nature Lagrangian of the SPH method, is necessary to balance the load

throughout the simulation.

FIRST approach according to the number of fluid particles

The number of particles must be redistributed after some time steps to get the

workload balanced among the processes and minimise the synchronisation time.

SECOND approach according to the required computation time of each device

Enables the adaptation of the code to the features of a heterogeneous cluster

achieving a better performance.

N×5. Multi-GPU implementation

3rd DualSPHysics Users Workhop, 13-15 November 2017, Parma (Italy)

Hardware:
GTX
680

GTX
480

GTX
285

0 5 10 15

3 GPUs (bal. time)

3 GPUs (bal. particles)

GTX 680

GTX 480

GTX 285

runtime (h)

N×

Results using one GPU and several GPUs with dynamic load balancing

5.1. Dynamic load balancing

3rd DualSPHysics Users Workhop, 13-15 November 2017, Parma (Italy)

Results using one GPU and several GPUs with dynamic load balancing

• Using the fastest GPU (GTX 680) 5.8 hours

• Using three different GPUs

According to the number of fluid particles 4.6 hours

According to the required computation time 2.8 hours

0 5 10 15

3 GPUs (bal. time)

3 GPUs (bal. particles)

GTX 680

GTX 480

GTX 285

The second approach is 1.7x faster than first approach

and 2.1x faster than one GPU.

N×5.1. Dynamic load balancing

3rd DualSPHysics Users Workhop, 13-15 November 2017, Parma (Italy)

Testcase for results

• Dam break flow.

• Physical time of simulation is 0.6 seconds.

• The number of used particles varies from 1M to 1,024M particles.

N×5.2. Latest optimisations in Multi-GPU

3rd DualSPHysics Users Workhop, 13-15 November 2017, Parma (Italy)

Results of efficiency

The simulations were carried out in the Barcelona Supercomputing Center BSC-

CNS (Spain). This system is built with 256 GPUs Tesla M2090.

All the results presented here were obtained single precision and Error-correcting

code memory (ECC) disabled.

Activity at BARCELONA SUPERCOMPUTING CENTER:

“Massively parallel Smoothed Particle Hydrodynamics scheme using GPU clusters”

N×5.2. Latest optimisations in Multi-GPU

3rd DualSPHysics Users Workhop, 13-15 November 2017, Parma (Italy)

0

32

64

96

128

0 32 64 96 128

GPUs

Speedup - Weak scaling

1M/Gpu
4M/Gpu
8M/Gpu
Ideal

Efficiency close to 100% simulating 4M/GPU

with 128 GPUs Tesla M2090 of BSC.

This is possible because the time dedicated to

tasks exclusive of the multi-GPU executions

(communication between processes, CPU-GPU

transfers and load balancing) is minimum.

N×

ref

ref

NNT

NNT
NS






)(

)(
)(

N

NS
NE

)(
)(

5.2. Latest optimisations in Multi-GPU

3rd DualSPHysics Users Workhop, 13-15 November 2017, Parma (Italy)

Percentage of time dedicated to tasks exclusive of the multi-GPU

executions (including the latest improvements).

N×

0%

2%

4%

6%

0 32 64 96 128
GPUs

1M/gpu (new)

4M/gpu (new)

8M/gpu (new)

5.2. Latest optimisations in Multi-GPU

3rd DualSPHysics Users Workhop, 13-15 November 2017, Parma (Italy)

dp= 6 cm, h= 9 cm

np = 1,015,896,172 particles

nf = 1,004,375,142 fluid particles

physical time= 12 sec

of steps = 237,065 steps

runtime = 79.1 hours

using 64 GPUs Tesla M2090 of the BSC-CNS

64×

Simulation of 1 billion SPH particles

Large wave interaction with oil rig using 10^9 particles

5.3. Large simulations

3rd DualSPHysics Users Workhop, 13-15 November 2017, Parma (Italy)

Simulación de un billón de partículas SPH

Video link:
https://youtu.be/B8mP9E75D08

https://youtu.be/B8mP9E75D08

32×

Simulation of a real case

Using 3D geometry of the beach Itzurun in Zumaia-Guipúzcoa (Spain) in Google Earth

32 x M2090 (BSC)

Particles: 265 Millions

Physical time: 60 seconds

Steps: 218,211

Runtime: 246.3 hours

5.3. Large simulations

3rd DualSPHysics Users Workhop, 13-15 November 2017, Parma (Italy)

Video links:
https://youtu.be/nDKlrRA_hEA

https://youtu.be/kWS6-0Z_jIo

https://youtu.be/nDKlrRA_hEA
https://youtu.be/kWS6-0Z_jIo

Decomposition in 2D and 3D

• Now only 1D but 2D and 3D will be implemented in the future.

• 1D approach is correct when the domain of simulation is very narrow but this

approach is not well adapted to other domains.

• A 2D and 3D decomposition is necessary for a better distribution of the work load

when using hundreds of GPUs.

N×5.4. Future improvements

Example of the 2D decomposition we are working on

3rd DualSPHysics Users Workhop, 13-15 November 2017, Parma (Italy)

Outline

1. Introduction
1.1. Smooth Particle Hydrodynamics

1.2. Why is SPH too slow?

1.3. High Performance Computing (HPC)

1.4. DualSPHysics project

2. DualSPHysics implementation
2.1. Implementation in three steps

2.2. Neighbour list approaches

3. CPU acceleration

4. GPU acceleration
4.1. Parallelization problems in SPH

4.2. GPU optimisations

5. Multi-GPU acceleration
5.1. Dynamic load balancing

5.2. Latest optimisations in Multi-GPU

5.3. Large simulations

5.4. Future improvements

6. New Multi-GPU approach

3rd DualSPHysics Users Workhop, 13-15 November 2017, Parma (Italy)

6. New Multi-GPU approach

Consumers can now easily purchase desktop machines or a single

compute node with 4-8 GPUs for only a few thousand euros.

New Multi-GPU code optimized for Multi-GPU machines

CUDA (and OpenMP), not MPI

Only for several GPUs in the same machine

Typical clusters have 2, 4 or 8 GPUs

Simulations with 100-200M particles

120M using 4x GTX Titan (6GB)

3rd DualSPHysics Users Workhop, 13-15 November 2017, Parma (Italy)

6. New Multi-GPU approach

Consumers can now easily purchase desktop machines or a single

compute node with 4-8 GPUs for only a few thousand euros.

2 x CPU:

Intel Xeon E5-2640 v2

8 cores at 2GHz

4 x GPU:

Nvidia Titan

2688 cores at 837Mhz

6GB GDDR5

For example,

at Universidade de Vigo

3rd DualSPHysics Users Workhop, 13-15 November 2017, Parma (Italy)

6. New Multi-GPU approach

Consumers can now easily purchase desktop machines or a single

compute node with 4-8 GPUs for only a few thousand euros.

New Multi-GPU code optimized for Multi-GPU machines

CUDA (and OpenMP), not MPI

Only for several GPUs in the same machine

Typical clusters have 2, 4 or 8 GPUs

Simulations with 100-200M particles

120M using 4x GTX Titan (6GB)

3rd DualSPHysics Users Workhop, 13-15 November 2017, Parma (Italy)

6. New Multi-GPU approach

Desktop/single-node GPU

GPU
480 cores

GPU
480 cores

OpenMP

CUDA

MPI

CPU
6 cores

GPU
480 cores

CPU
6 cores

CPU
6 cores

GPU clustersOne GPU card

GPU
480 cores

GPU
480 cores

OpenMP

CUDA

MPI

CPU
6 cores

GPU
480 cores

CPU
6 cores

CPU
6 cores

2011-today

Release of

open-source code

since 2012

Simulations on

Supercomputing

Centers (BSC)

2018

To be released as

open-source code

3rd DualSPHysics Users Workhop, 13-15 November 2017, Parma (Italy)

6. New Multi-GPU approach

Drawbacks :

• Limited number of GPUs (2-8 GPUs)

• Limited size of simulation. Not 109

particles

• Does not work in distributed systems

Advantages:

• More portable and easy to use in Linux
and Windows

• Simpler code and easier to modify

• More efficient communication. MPI
overhead was removed.

• Not special pre-processing and post-
processing tools

• Updated code. It will include all
capabilities in the last version of
DualSPHysics

New Multi-GPU code optimized for Multi-GPU machines

3rd DualSPHysics Users Workhop, 13-15 November 2017, Parma (Italy)

Video link:
https://youtu.be/EvSDFRfJToQ

https://youtu.be/EvSDFRfJToQ

HPC for SPH methods:
multicore GPU and multiGPU

José Domínguez, A. Mokos, B.D. Rogers,

A.J.C. Crespo and M. Gómez-Gesteira

+

3rd DualSPHysics Users Workhop, 13-15 November 2017, Parma (Italy)

