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Motivation for Research

e Primary focus on violent water flows with breaking free surface, e.qg.
wave impact/slamming or potentially explosive pipe flows

e Presence of air is important for violent flows: large changes in pressure
and velocities, e.q. flip-through effect




Motivation for Research

e Lagrangian methods such as SPH are ideal as they can capture the

fractured surface to minute detall

e Increased domain size due to the presence of air and the high-order
phenomena necessitate high resolutions and large numbers of particles

e Develop an efficient SPH Methodology for simulating air-water
Improve on single-phase

mixtures using multi-phase model
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Challenges of Multi-Phase SPH

« Challenge 1: Interaction of a gas and a liquid phase

o Large density ratio ( 1000)

o Large pressure gradients in the
interface

o Treatment of the gas phase

* SOLUTION: Use of the Colagrossi & Landrini (2003)
multi-phase model



SPH Formulation for Multi-Phase Flows

. - p(o)—p|[ 2] -
Equation of State: P(p)—Po[(poj }

 Last two terms are only used for air particles

« ais a cohesion coefficient given by: a=1.5¢g 'OVZV L

a

« x Is the constant background pressure

SPH formulation for Navier-Stokes:
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Challenges of Multi-Phase SPH

* Challenge 1: Interaction of a gas and a liquid phase

o Treatment of the gas phase

* |ssues:

o Gas phase treated as compressible liquid due to the equation of
state

o Does not expand to areas with lower concentration



Issues on Higher Resolutions

Sloshing Tank

Dry Dam Break
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* Issues with isolated water particles



Particle shifting

Issue: Voids appear only in high resolutions




Particle shifting
Issue: Voids appear only in high resolutions

Solution: Fickian-based approach by Lind et al.
(2012)

Numerical treatment based on Fick’s law: or =—DVC

m.
Shifting dependent on particle concentration: VC. = ZCU —Lvw,

Diffusion based on particle velocity (Skillenetal. D = _AshHUHi At
2013):

. oC. oC. _
Free-surface correction term: or, :—D£ asl S+ 8?)' b+a(—'—

o Used only for the liquid phase



Modelling the Air Phase:
Shifting with surface correction

Initial Particle Position Position after 0.2s

Volume of air expanded by applying a constant pressure
Air volume only slightly expands

Minor repositioning of the particles inside the volume
Increased number of particles close to the free surface



Modelling the Air Phase:
Shifting without surface correction

Initial Particle Position Position after 0.2s

Volume of air expanded by applying a constant pressure
Air expands uniformly
Concentration gradient is consistent with a full kernel

Inconsistencies at the edge due to the single precision and the
small number of particles



Wet Dam Break

* Original
Result

« Particle
Shifting




Challenges of Multi-Phase SPH

I lensity-ratio 1000

o—Treatmentof-the-gasphase

« Challenge 2: Computational treatment
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o SPH is computationally expensive

o Increased number of particles due to the
second phase

« SOLUTION: Use Graphics Processing Units (GPUSs) for
the simulation



Challenges of Multi-Phase SPH

New Challenge: Optimise the multi-phase code for GPU

« SOLUTION: Use Graphics Processing Units (GPUSs) for
the simulation

o Increased number of particles due to the
second phase




Demands of a multi-phase GPU code

 Distinguish particles belonging to
different phases

o Load different initial data for each phase

o ID-system recognising phase of each S
particle (use of mk values)

« Optimise the multi-phase model

o Different equations used for each
phase

)\
Neightl)ouring Neighbour Search

« Maintain the existing structure of
DualSPHysics

o Integration with other capabilities of the code,
such as motion

o Maintain the efficient cell-linked-list structure



Optimisation of SPH on GPUs

 Calculating inter-particle forces is the most demanding
part of SPH

« Research has shown the best practices for optimising:

o Eliminate conditional if statements
o Reduction of logical operations

o Minimise CPU-GPU interaction

o Minimise memory (local and global) transfers

o Balance computational load on the GPU Water

o Separate particle and neighbour lists for each phase is beneficial
for large particle numbers

(Mokos et al. 2015)



Runtime Results — 2D
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Runtime Results — 3D
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New Cases: Sloshing Tank

« Smooth interface maintained

« Good prediction of the pressure

« Value of the pressure peak
depends:

« Speed of sound for the water
« Speed of sound ratio
« Atrtificial viscosity coefficient
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3D Dam break

670,000 particles: 87,000 water particles / 535,000 air particles

Simulation runtime: 35 hours on a 5-year old card for 8s



3D Dam break

Velocity Water Density

« Simulation of 5 million particles
« Simulation runtime: 140 hours for 3s

» Equivalent in OpenMP DualSPHysics: 1120 hours or 47 days



Surface Tension

e Design of DualSPHysics allows for

easy modifications and additions to

the code

e Surface tension based on the CSF
model (Hu & Adams 2006)

e Uses a colour index function
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Surface Tension

e Design of DualSPHysics allows for
easy modifications and additions to

the code

e Surface tension based on the CSF
model (Hu & Adams 2006)

e Uses a colour index function




Future Work

Use the code for less violent flows
Implement variable particle resolution and multi-GPU support
Comment the multi-phase code and document changes from

original DualSPHysics code

Release a validated open version of the code
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