

The Universit of Manchesté

Multi-phase Modelling of violent air-water flows using DualSPHysics

Athanasios Mokos, Benedict D. Rogers, Peter K. Stansby

School of Mechanical, Aeronautical and Civil Engineering University of Manchester UK

DualSPHysics User Workshop, 8-9 September 2015

Outline of Presentation

- Motivation for Research
- Multi-Phase Model
- Particle Shifting Algorithm
 - Issues on higher resolutions
 - Modelling of the air phase
- GPU Optimization
 - Demands of GPU programming
 - Optimization of SPH
- Results
 - Runtime Results
 - Sloshing Tank
 - 3D Obstacle Impact Case
- Conclusions & Future Developments

Motivation for Research

- Primary focus on violent water flows with breaking free surface, e.g. wave impact/slamming or potentially explosive pipe flows
- Presence of air is important for violent flows: large changes in pressure and velocities, e.g. flip-through effect

Motivation for Research

- Lagrangian methods such as SPH are ideal as they can capture the fractured surface to minute detail
- Increased domain size due to the presence of air and the high-order phenomena necessitate high resolutions and large numbers of particles
- Develop an efficient SPH Methodology for simulating air-water mixtures using multi-phase model to improve on single-phase computations

Challenges of Multi-Phase SPH

• Challenge 1: Interaction of a gas and a liquid phase

Large density ratio (~1000)

- Large pressure gradients in the interface
- \circ Treatment of the gas phase

• **SOLUTION**: Use of the Colagrossi & Landrini (2003) multi-phase model

SPH Formulation for Multi-Phase Flows

Equation of State:
$$P(\rho) = P_0 \left[\left(\frac{\rho}{\rho_0} \right)^{\gamma} - 1 \right] \frac{a\rho^2 + \chi}{\rho^2 + \chi}$$

- Last two terms are only used for air particles
- α is a cohesion coefficient given by:
- χ is the constant background pressure

SPH formulation for Navier-Stokes:

- Momentum
 - Water:
 - Air:
- Mass:

$$\left\langle \frac{d\mathbf{u}}{dt} \right\rangle = -\frac{1}{\rho_i} \sum_{j} \left(\frac{m_j}{\rho_j} \left[p_j + p_i + \Pi_{ij} \right] \nabla_i W_{ij} \right)$$
$$\left\langle \frac{d\mathbf{u}}{dt} \right\rangle = -\frac{1}{\rho_i} \sum_{j} \left(\frac{m_j}{\rho_j} \left[p_j + p_i + \Pi_{ij} \right] \nabla_i W_{ij} - 2a\rho_a^2 \frac{m_j}{\rho_j} \nabla_i W_{ij} \right)$$
$$\left\langle \frac{d\rho}{dt} \right\rangle = \rho_i \sum_{j} \frac{m_j}{\rho_j} \left(\mathbf{u}_i - \mathbf{u}_j \right) \cdot \nabla_i W_{ij}$$

$$a = 1.5g \frac{\rho_w}{\rho_a^2} L$$

Challenges of Multi-Phase SPH

• Challenge 1: Interaction of a gas and a liquid phase

⊖ Large density ratio (~1000)

 → Large pressure gradients in the interface

• Treatment of the gas phase

• Issues:

- Gas phase treated as compressible liquid due to the equation of state
- $\,\circ\,$ Does not expand to areas with lower concentration

Issues on Higher Resolutions

Dry Dam Break

Sloshing Tank

- Voids created in the air phase
- Located in entrained flow and in the particle interface for more sensitive cases
- Issues with isolated water particles inside the air phase

Particle shifting

Issue: Voids appear only in high resolutions

Particle shifting

Issue: Voids appear only in high resolutions

Solution: Fickian-based approach by Lind et al. (2012)

• Numerical treatment based on Fick's law:

$$\delta \mathbf{r}_{s} = -D\nabla C_{i}$$

- Shifting dependent on particle concentration:
- Diffusion based on particle velocity (Skillen et al. D = 2013):
- Free-surface correction term:

Used only for the liquid phase

$$\nabla C_{i} = \sum_{j} C_{ij} \frac{m_{j}}{\rho_{j}} \nabla W_{ij}$$

al. $D = -A_{s} h \|u\|_{i} \Delta t$

$$\delta \mathbf{r}_{s} = -D\left(\frac{\partial C_{i}}{\partial s}\mathbf{s} + \frac{\partial C_{i}}{\partial b}\mathbf{b} + \alpha\left(\frac{\partial C_{i}}{\partial n} - \beta\right)\mathbf{n}\right)$$

Modelling the Air Phase: Shifting with surface correction

Initial Particle Position

Position after 0.2s

- Volume of air expanded by applying a constant pressure
- Air volume only slightly expands
- Minor repositioning of the particles inside the volume
- Increased number of particles close to the free surface

Modelling the Air Phase: Shifting without surface correction

- Volume of air expanded by applying a constant pressure
- Air expands uniformly
- Concentration gradient is consistent with a full kernel
- Inconsistencies at the edge due to the single precision and the small number of particles

Wet Dam Break

 Original Result

 Particle Shifting

Challenges of Multi-Phase SPH

• Challenge 1: Interaction of a gas and a liquid phase

⊖ Large density ratio (~1000)

⊖ Large pressure gradients in the interface

⊖ Treatment of the gas phase

Challenge 2: Computational treatment

 $_{\odot}$ SPH is computationally expensive

 Increased number of particles due to the second phase

 SOLUTION: Use Graphics Processing Units (GPUs) for the simulation

Challenges of Multi-Phase SPH

• Challenge 1: Interaction of a gas and a liquid phase

⊖ Large density ratio (~1000)

→ Large pressure gradients in the interface

⊖ Treatment of the gas phase

New Challenge: Optimise the multi-phase code for GPU

Increased number of particles due to the second phase

 SOLUTION: Use Graphics Processing Units (GPUs) for the simulation

Demands of a multi-phase GPU code

- Distinguish particles belonging to different phases
 - \circ Load different initial data for each phase
 - ID-system recognising phase of each particle (use of *mk* values)
- Optimise the multi-phase model
 - Different equations used for each phase
- Maintain the existing structure of DualSPHysics
 - Integration with other capabilities of the code, such as motion
 - \circ Maintain the efficient cell-linked-list structure

Optimisation of SPH on GPUs

- Calculating inter-particle forces is the most demanding part of SPH
- Research has shown the best practices for optimising:
 - o Eliminate conditional if statements
 - Reduction of logical operations
 - Minimise CPU-GPU interaction
 - Minimise memory (local and global) transfers
 - Balance computational load on the GPU
 - Separate particle and neighbour lists for each phase is beneficial for large particle numbers

(Mokos et al. 2015)

Runtime Results – 2D

Runtime Results – 3D

New Cases: Sloshing Tank

3D Dam break

- 670,000 particles: 87,000 water particles / 535,000 air particles
- Simulation runtime: 35 hours on a 5-year old card for 8s

3D Dam break

Velocity

Water Density

- Simulation of 5 million particles
- Simulation runtime: 140 hours for 3s
- Equivalent in OpenMP DualSPHysics: 1120 hours or 47 days

 Design of DualSPHysics allows for easy modifications and additions to the code

 Surface tension based on the CSF model (Hu & Adams 2006)

 Design of DualSPHysics allows for easy modifications and additions to the code

 Surface tension based on the CSF model (Hu & Adams 2006)

 Design of DualSPHysics allows for easy modifications and additions to the code

 Surface tension based on the CSF model (Hu & Adams 2006)

 Design of DualSPHysics allows for easy modifications and additions to the code

 Surface tension based on the CSF model (Hu & Adams 2006)

Future Work

- Use the code for less violent flows
- Implement variable particle resolution and multi-GPU support
- Comment the multi-phase code and document changes from original DualSPHysics code
- Release a validated open version of the code

Thank you

Acknowledgments

- U-Man: George Fourtakas, Peter Stansby, Steve Lind, Antonios Xenakis, Stephen Longshaw
- U-Vigo: Jose Dominguez, Alex Crespo, Moncho Gomez-Gesteira
- U-Parma: Renato Vacondio

Websites

• Free open-source **DualSPHysics**

code:

http://www.dual.sphysics.org

