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Motivation for Research

● Primary focus on violent water flows with breaking free surface, e.g.

wave impact/slamming or potentially explosive pipe flows

● Presence of air is important for violent flows: large changes in pressure
and velocities, e.g. flip-through effect



Motivation for Research

● Develop an efficient SPH Methodology for simulating air-water

mixtures using multi-phase model to improve on single-phase

computations

● Lagrangian methods such as SPH are ideal as they can capture the
fractured surface to minute detail

● Increased domain size due to the presence of air and the high-order

phenomena necessitate high resolutions and large numbers of particles

Air 

Water



Challenges of Multi-Phase SPH

• Challenge 1: Interaction of a gas and a liquid phase

o Large density ratio (  1̴000)

o Large pressure gradients in the 
interface

o Treatment of the gas phase

• SOLUTION: Use of the Colagrossi & Landrini (2003) 
multi-phase model



SPH Formulation for Multi-Phase Flows

Equation of State:

• Last two terms are only used for air particles

• α is a cohesion coefficient given by:  

• χ is the constant background pressure

SPH formulation for Navier-Stokes:

• Momentum

• Water:

• Air:

• Mass:

  














j

iji

j

j

aijiijij

j

j

i

W
m

aWpp
m

dt

d






22
1u

  
































 aPP 1

0

0

Lga
a

w

2
5.1






  














j

ijiijij

j

j

i

Wpp
m

dt

d



1u

  iji

j

ji

j

j

i W
m

dt

d
  uu








Challenges of Multi-Phase SPH

• Challenge 1: Interaction of a gas and a liquid phase

o Large density ratio (  ̴1000)

o Large pressure gradients in the 
interface

o Treatment of the gas phase

• Issues: 

o Gas phase treated as compressible liquid due to the equation of 
state

o Does not expand to areas with lower concentration



Issues on Higher Resolutions

• Voids created in the air phase

• Located in entrained flow and in the particle interface for more 
sensitive cases

• Issues with isolated water particles inside the air phase

Dry Dam Break Sloshing Tank



Particle shifting

Issue: Voids appear only in high resolutions
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Solution: Fickian-based approach by Lind et al. 

(2012)

 Numerical treatment based on Fick’s law:

 Shifting dependent on particle concentration:

 Diffusion based on particle velocity (Skillen et al. 

2013):

Particle shifting

Issue: Voids appear only in high resolutions

is CDδ r

 
j

ij

j

j

iji W
m

CC


tΔuhAD
is

 Free-surface correction term: 
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o Used only for the liquid phase



Modelling the Air Phase:
Shifting with surface correction

Initial Particle Position Position after 0.2s

• Volume of air expanded by applying a constant pressure

• Air volume only slightly expands

• Minor repositioning of the particles inside the volume

• Increased number of particles close to the free surface



Modelling the Air Phase:
Shifting without surface correction

• Volume of air expanded by applying a constant pressure

• Air expands uniformly

• Concentration gradient is consistent with a full kernel

• Inconsistencies at the edge due to the single precision and the 
small number of particles

Initial Particle Position Position after 0.2s



Wet Dam Break

• Original 

Result

• Particle 

Shifting



Challenges of Multi-Phase SPH

• Challenge 1: Interaction of a gas and a liquid phase

o Large density ratio (  1̴000)

o Large pressure gradients in the interface

o Treatment of the gas phase

• Challenge 2: Computational treatment

o SPH is computationally expensive

o Increased number of particles due to the 
second phase

• SOLUTION: Use Graphics Processing Units (GPUs) for 
the simulation



Challenges of Multi-Phase SPH

• Challenge 1: Interaction of a gas and a liquid phase

o Large density ratio (  1̴000)

o Large pressure gradients in the interface

o Treatment of the gas phase

• Challenge 2: Computational treatment

o SPH is computationally expensive

o Increased number of particles due to the 
second phase

• SOLUTION: Use Graphics Processing Units (GPUs) for 
the simulation

New Challenge: Optimise the multi-phase code for GPU



Demands of a multi-phase GPU code

• Distinguish particles belonging to 

different phases

o Load different initial data for each phase

o ID-system recognising phase of each 

particle (use of mk values)

• Optimise the multi-phase model

o Different equations used for each 

phase

• Maintain the existing structure of 

DualSPHysics

o Integration with other capabilities of the code, 

such as motion

o Maintain the efficient cell-linked-list structure

 

Figure 1: Example of the Cell-linked List using 2h×2h cells 
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Optimisation of SPH on GPUs

• Research has shown the best practices for optimising: 

o Eliminate conditional if statements

o Reduction of logical operations

o Minimise CPU-GPU interaction

o Minimise memory (local and global) transfers

o Balance computational load on the GPU

o Separate particle and neighbour lists for each phase is beneficial 

for large particle numbers

• Calculating inter-particle forces is the most demanding 

part of SPH
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Runtime Results – 2D

• Speedup up to 100
compared to single CPU
core

• Results for version 2

Air Phase

Water Phase

4 m

4 m

2 m

• Speed-up is GPU-dependent

• Speedup up to 21
compared to an 8-thread
OpenMP computation

Single 
Thread

OpenMP



Runtime Results – 3D

• Speedup up to 170
compared to single CPU
core

• Results for version 2

• Speed-up is GPU-dependent

• Speedup up to 16 compared
to an 8-thread OpenMP
computation

Single 
Thread

OpenMP

4 m

Air Phase

Water Phase2 m

1 m

4 m



New Cases: Sloshing Tank

• Smooth interface maintained

• Good prediction of the pressure

• Value of the pressure peak 
depends:

• Speed of sound for the water

• Speed of sound ratio 

• Artificial viscosity coefficient

Cs,w=20m/s

Cs,w/Cs,a=10

Cs,w=17m/s

Cs,w/Cs,a=7.5



3D Dam break

• Simulation runtime: 35 hours on a 5-year old card for 8s

• 670,000 particles: 87,000 water particles / 535,000 air particles



3D Dam break

Velocity Water Density

• Simulation of 5 million particles

• Simulation runtime: 140 hours for 3s

• Equivalent in OpenMP DualSPHysics: 1120 hours or 47 days



Surface Tension

 Surface tension based on the CSF 
model (Hu & Adams 2006)

 Uses a colour index function

 Design of DualSPHysics allows for 

easy modifications and additions to 

the code
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Future Work

 Release a validated open version of the code

 Comment the multi-phase code and document changes from 

original DualSPHysics code

 Use the code for less violent flows

 Implement variable particle resolution and multi-GPU support
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Websites

• Free open-source DualSPHysics

code:

http://www.dual.sphysics.org


