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Motivation 

o Real life engineering problems 
o Underwater sand bed trenching 
o Local scour around structures 
o Suspension of hazardous materials 

o UK Nuclear industry application 
o Industrial tank 
o Hazardous material 
o Sediment agitation 
o Submerged jets 

 

o GPUs Why? 
o Complicated geometry 
o Complex industrial flows 
o Computational cost 



Traditional CFD methods (Eulerian)  

Grid based methods 

o Mesh generation can be expensive 
o Mesh refinement in areas of interest (some knowledge a priori) 
o Not applicable to highly non-linear deformations, (or very expensive) 
o Multi-phase, free surfaces and phase-change flows 



The SPH method 

o Using the total derivative 
 
 
 

the Lagrangian form of the Navier-Stokes equations is: 

o Momentum equation (conservation of momentum) 

o Continuity equation (conservation of mass) 

o Tait’s equation of State (weakly compressible SPH (WCSPH)) 

o Plus other closure models  

Navier Stokes equations in Lagrangian form and SPH formalism 
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Multi-phase model 

   
 

o Liquid phase 
o Newtonian flow 

 

o Sediment phase  

o Yield criteria 

o Surface yielding 

o Sediment skeleton pressure 

o Non-Newtonian flow 

o Sediment shear layer at the interface 

o Seepage forces 

o Sediment resuspension 

o Entrainment of soil grains by the liquid 

 

Liquid – sediment model 



o Weakly compressible SPH (WCSPH) 
 
o Tait’s equation of state to relate pressure to density 

 
o δ-SPH – Density diffusion term  

 
o Particle shifting – Particle re-ordering  
 
o Turbulence is modelled through a SPS model 

 
o GPU implementation to DualSPHysics  

 
 

Liquid phase 

Multi-phase model 



o Multi-phase implementation 
 
                    
 
 

since 
 
 
 
from 

Liquid phase 

o Newtonian constitutive equation 
o Single phase DualSPHysics 
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Liquid phase 

o δ-SPH 
o Diffusion term  

 

 

where T 

 

 

 

o The continuity equation 
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Liquid phase 

o Shifting scheme [Lind et al. 2012, Skillen et al. 

2013] 

o Interior fluid domain 

 

 

o Surface of the fluid 
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Sediment phase 

o Treated as a semi-solid non-Newtonian fluid 

o Non-Newtonian flow 
o Herschel-Bulkley-Papanastasiou Bingham constitutive model 

o Entrained suspended sediment 
o Concentration based apparent viscosity based on a Newtonian 
formulation, Vand model 

Multi-phase model 

o Approximation of seepage forces on the surface 
o Darcy law 

o Yield criterion Drucker-Prager 
o Below a critical level of sediment deformation sediment particles remain still 
o Above a critical level of sediment deformation follow the governing equations 



Sediment phase 

o Surface Yielding  
o Drucker-Prager (DP) yield criterion 

o For an isotropic material 

 
o Apply the yield criterion 

 
o Yielding occurs when 
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Sediment phase 

o Sediment skeleton pressure 
o For a fully saturated soil 

o Terzaghi relationship  

 

o or 

 

o Pore water pressure 
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Sediment phase 

o Sediment constitutive equation 
o Simple Bingham 

 

 
o Herschel-Bulkley-Papanastasiou (HBP) 

o Viscous – Plastic (m exponential growth) 

o Shear thinning or thickening (n power law) 
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Sediment phase 

o Seepage force 
o Generalised Darcy law 

 

 

 

 

o Suspension 
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Vand equation 
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(Soil properties) 

Inflow 



o Multi-phase issues 
o Branching 

o Registers 

o Arithmetic operations 

o Larger data size 

 

o Resolve 
o Memory operations 

o Smaller kernels 

o Combine similar operations  

 

 

 
(See Mokos et al. 2015) 

GPU implementation in DualSPHysics 

GPU algorithm speed up curve  
(x58 compared to a single thread CPU) 



Numerical results 

Soil Dam break 
Bui et al., Langrangian method for large 
deformation and failure flows of geo-
material, 2008 

 

Sediment block collapse 
Lude et al., Axisymmetric collapses of granular 
columns, 2014 

 



Numerical results 

Case definition 
Erodible Dam break 

Spinewine et al., Intense bed-load due to sudden dam 
break, 2013 

 
Parameter Value Units 

Liquid height 0.1 m 

Sediment height 0.6 m 

Density ratio  1.54 

Porosity 

Numerical 
cohesion  

100 Pa 

Sediment 
viscosity 

500 Pa.se
c 

m (HBP) 100 

n (HBP) 1.6 

Runtime 1.5 sec 

No. Particle 328 000 



2-D Erodible dam break 

Qualitative comparison of (a) experimental and (b) current numerical results and 
(c) comparison of liquid-sediment profiles of the experiments, numerical results 

of Ulrich et al. and current model at t = 0.25 s.  



2-D Erodible dam break 

Qualitative comparison of (a) experimental and (b) current numerical results and 
(c) comparison of liquid-sediment profiles of the experiments, numerical results 

of Ulrich et al. and current model at t = 0.50 s.  



2-D Erodible dam break 

Qualitative comparison of (a) experimental and (b) current numerical results and 
(c) comparison of liquid-sediment profiles of the experiments, numerical results 

of Ulrich et al. and current model at t = 0.75 s.  



2-D Erodible dam break 

Qualitative comparison of (a) experimental and (b) current numerical results and 
(c) comparison of liquid-sediment profiles of the experiments, numerical results 

of Ulrich et al. and current model at t = 1.00 s.  



Case definition 
3-D Erodible dam break 

Soares-Frazão, S., et al., Dam-break flows over mobile beds., 2013  

 

 

Numerical results 

Parameter Value Units 

Liquid height 0.47 m 

Sediment height 0.085 m 

Density ratio  2.63 

Porosity 0.42 

Numerical 
cohesion  

100 Pa 

Sediment 
viscosity 

150 Pa.se
c 

m (HBP) 100 

n (HBP) 1.8 

Runtime 20 sec 

No. Particle 4 million 



o Sediment bed profile evolution video  

 

3-D Erodible dam break 



o Sediment bed profile at t = 20 s  

 

3-D Erodible dam break 

Bed profile at locations y1 Bed profile at locations y2 

Bed profile at locations y3 
Schematic of probes and  

Profile locations 



o Water level elevation video  

 

3-D Erodible dam break 



o Water level elevation from 0 to 20 s  

 

3-D Erodible dam break 

Water level at probe US1 Water level at probe US6 

Schematic of probes and  
Profile locations 



o A novel sediment model has been presented with improvements to 
the yielding, shear layer constitutive modelling and sediment 
resuspension  

o Good speed up characteristics achieved by the multi-phase GPU 
implementation (x58) 

o The 2-D and 3-D results where in good agreement with the 
experimental data especially for the 3-D case:  
o The sediment profile at different locations 

o The water level elevation at the probe locations 

o Future work 

o Inclusion of more physics, Shield’s criterion 

o Turbulence modelling (cheaper mixing length / RANS model)   

o Subaqueous sediment flows e.g. sea bed slope failure  

 

Conclusions 



Thank you 

Acknowledgments 

o NNL: Brendan Perry, Steve Graham 

o U-Man: Athanasios Mokos, Stephen Longshaw, 

Steve Lind, Abouzied Nasar, Peter Stansby  

o U-Vigo: Jose Dominguez, Alex Crespo, Anxo 

Barreiro, Moncho Gomez-Gesteira 

o U-Parma: Renato Vacondio 

 

Websites 

o http://www.dual.sphysics.org/ 
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