
Optimisation and SPH Tricks

José Manuel Domínguez Alonso

jmdominguez@uvigo.es

EPHYSLAB, Universidade de Vigo, Spain

+

mailto:jmdominguez@uvigo.es

Outline

1. Introduction

1.1. Why is SPH too slow?

1.2. High Performance Computing (HPC)

1.3. DualSPHysics project

2. DualSPHysics implementation

2.1. Implementation in three steps

2.2. Neighbour list approaches

3. CPU acceleration

4. GPU acceleration

4.1. Parallelization problems in SPH

4.2. GPU optimisations

5. Multi-GPU acceleration

5.1. Dynamic load balancing

5.2. Latest optimisations in Multi-GPU

5.3. Large simulations

6. Future improvements

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

The SPH method is very expensive in terms of computing time.

300,000 particles

1.5 s (physical time)

Takes more than

15 hours

(execution time)

For example, a simulation of this dam break

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

1.1. Why is SPH too slow?

The SPH method is very expensive in terms of computing time.

300,000 particles

1.5 s (physical time)

Takes more than

15 hours

(execution time)

For example, a simulation of this dam break

because:

• Each particle interacts

with more than 250

neighbours.

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

1.1. Why is SPH too slow?

The SPH method is very expensive in terms of computing time.

300,000 particles

1.5 s (physical time)

Takes more than

15 hours

(execution time)

For example, a simulation of this dam break

because:

• Each particle interacts

with more than 250

neighbours.

• ∆t=10-5-10-4 so more

than 16,000 steps are

needed to simulate 1.5

s of physical time.

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

1.1. Why is SPH too slow?

Drawbacks of SPH:

• SPH presents a high computational cost that increases when increasing the

number of particles.

• The simulation of real problems requires a high resolution which implies

simulating millions of particles.

The time required to simulate a few seconds is too large. One second of

physical time can take several days of calculation.

IT IS NECESSARY TO USE HPC TECHNIQUES TO REDUCE THESE

COMPUTATION TIMES.

1.1. Why is SPH too slow?

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

HPC includes multiple techniques of parallel computing and distributed

computing that allow you to execute several operations simultaneously.

The main techniques used to accelerate SPH are:

• OpenMP (Open Multi-Processing)

1.2. High Performance Computing (HPC)

– Model of parallel programming for systems of

shared memory.

– Portable and flexible programming interface

using directives.

– Its implementation does not involve major

changes in the code.

– The improvement is limited by the number of

cores.

OPENMP IS THE BEST OPTION TO OPTIMIZE THE PERFORMANCE

OF THE MULTIPLE CORES OF THE CURRENT CPUS.

Multi-core processor

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

HPC includes multiple techniques of parallel computing and distributed

computing that allow you to execute several operations simultaneously.

The main techniques used to accelerate SPH are:

• MPI (Message Passing Interface)

– Message-passing library specification for

systems of distributed memory: parallel

computers and clusters.

– Several processes are communicated by calling

routines to send and receive messages.

– The use of MPI is typically combined with

OpenMP in clusters by using a hybrid

communication model.

– Very expensive for a small research group.

MPI IS THE BEST OPTION TO COMBINE THE RESOURCES OF

MULTIPLE MACHINES CONNECTED VIA NETWORK.

MPI cluster

1.2. High Performance Computing (HPC)

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

HPC includes multiple techniques of parallel computing and distributed

computing that allow you to execute several operations simultaneously.

The main techniques used to accelerate SPH are:

• GPGPU (General-Purpose Computing on Graphics Processing Units)

– It involves the study and use of parallel

computing ability of a GPU to perform general

purpose programs.

– New general purpose programming languages

and APIs (such as Brook and CUDA) provide

an easier access to the computing power of

GPUs.

– New implementation of the algorithms used in

CPU is necessary for an efficient use in GPU.

GPU

1.2. High Performance Computing (HPC)

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

Advantages: GPUs provide a high calculation power with very low cost and without

expensive infrastructures.

Drawbacks: An efficient and full use of the capabilities of the GPUs is not

straightforward.

Graphics Processing Units (GPUs)

• powerful parallel processors

• designed for graphics rendering

• their computing power has increased

much faster than CPUs.

1.2. High Performance Computing (HPC)

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

Outline

1. Introduction

1.1. Why is SPH too slow?

1.2. High Performance Computing (HPC)

1.3. DualSPHysics project

2. DualSPHysics implementation

2.1. Implementation in three steps

2.2. Neighbour list approaches

3. CPU acceleration

4. GPU acceleration

4.1. Parallelization problems in SPH

4.2. GPU optimisations

5. Multi-GPU acceleration

5.1. Dynamic load balancing

5.2. Latest optimisations in Multi-GPU

5.3. Large simulations

6. Future improvements

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

Why two implementations?

This code can be used on machines with GPU and without GPU.

It allows us to make a fair and realistic comparison between CPU and GPU.

Some algorithms are complex and it is easy to make errors difficult to detect. So they are

implemented twice and we can compare results.

It is easier to understand the code in CUDA when you can see the same code in C++.

Drawback: It is necessary to implement and to maintain two different codes.

First version in late 2009.

It includes two implementations:

 - CPU: C++ and OpenMP.

 - GPU: CUDA.

Both options optimized for the best

performance of each architecture.

2. DualSPHysics implementation

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

For the implementation of SPH, the code is organised in 3 main steps that are repeated

each time step till the end of the simulation.

Initial Data

Neighbour List
(NL)

Particle
Interaction (PI)

System
Update (SU)

Save Data
(occasionally)

Neighbour list (NL):

Particles are grouped in cells and reordered to

optimise the next step.

Particle interactions (PI):

Forces between particles are computed, solving

momentum and continuity equations.

This step takes more than 95% of execution

time.

System update (SU):

Starting from the values of computed forces, the

magnitudes of the particles are updated for the

next instant of the simulation.

2.1. Implementation in three steps

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

Particle Interaction (PI) consumes more than

95% of the execution time. However, its

implementation and performance depends

greatly on the Neighbour List (NL).

NL step creates the neighbour list to

optimise the search for neighbours during

particle interaction.

2.2. Neighbour list approaches

Initial Data

Neighbour List
(NL)

Particle
Interaction (PI)

System
Update (SU)

Save Data
(occasionally)

Two approaches were studied:

• Cell-linked list (CLL)

• Verlet list (VL)

• Classical Verlet List (VLC)

• Improved Verlet List (VLX)

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

Cell-linked List (CLL)

• The computational domain is divided in cells of side 2h (cut-off limit).

• Particles are stored according to the cell they belong to.

• So each particle only looks for its potential neighbours in the adjacent cells.

2.2. Neighbour list approaches

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

Cell-linked List (CLL)

• The computational domain is divided in cells of side 2h (cut-off limit).

• Particles are stored according to the cell they belong to.

• So each particle only looks for its potential neighbours in the adjacent cells.

2h

In this example:

2h

2.2. Neighbour list approaches

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

Cell-linked List (CLL)

• The computational domain is divided in cells of side 2h (cut-off limit).

• Particles are stored according to the cell they belong to.

• So each particle only looks for its potential neighbours in the adjacent cells.

2h

In this example:

141 Potential neighbours

(gray particles)

2h

2.2. Neighbour list approaches

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

Cell-linked List (CLL)

• The computational domain is divided in cells of side 2h (cut-off limit).

• Particles are stored according to the cell they belong to.

• So each particle only looks for its potential neighbours in the adjacent cells.

In this example:

141 Potential neighbours

(gray particles)

47 real neighbours

(dark gray particles) 2h

2h

2h

2.2. Neighbour list approaches

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

Verlet List

• The computational domain is divided in cells of side 2h (cut-off limit).

• Particles are stored according to the cell they belong to.

• So each particle only looks for its potential neighbours in the adjacent cells.

• Array of real neighbours is created for each particle.

a1

a2

a3

a4

b1

b2

b3

c1

c2

c3

c4

d1

d2

...

Array with real
neighbours of...

particle a

particle b

particle c

particle d

2.2. Neighbour list approaches

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

Improved Verlet List (VLX)

• ∆h is calculated in the same way as in VLC but the number of steps the list is kept

(X instead of C) is only tentative.

• The constant v=1 (instead of 1.2) is used because no extra distance is necessary.

• The same list can be used for several time steps.

∆h=v(2·Vmax·C·dt)

Vmax: maximum velocity

C: time steps that list is fixed

dt: physical time for one time step

v: constant to remove inaccuracies

in calculations

2.2. Neighbour list approaches

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

Testcase for results

• Dam break flow impacting on a structure (experiment of Yeh and Petroff at the

University of Washington).

• Physical time of simulation is 1.5 seconds.

• The number of used particles varies from 4,000 to 150,000.

2.2. Neighbour list approaches

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

Testcase: Dam break flow impacting on a structure

PhD Thesis defense, November 7, 2014, Ourense (Spain)

Video link:
https://youtu.be/_OFsAVuwxaA

https://youtu.be/_OFsAVuwxaA
https://youtu.be/_OFsAVuwxaA

The best Neighbour List approach is…

DualSPHysics is designed to simulate large number of particles. So that,

Cell-linked list is the best option to be implemented since it provides

the best balance between the performance and the memory usage.

Computational

runtime

Memory

requirements

CLL (Cell-linked list) fast minimum

VLX (improved Verlet list)
the fastest

(only 6% faster than CLL)

very heavy
(30 times more than CLL)

VLC (classical Verlet list) the slowest the most inefficient

2.2. Neighbour list approaches

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

Outline

1. Introduction

1.1. Why is SPH too slow?

1.2. High Performance Computing (HPC)

1.3. DualSPHysics project

2. DualSPHysics implementation

2.1. Implementation in three steps

2.2. Neighbour list approaches

3. CPU acceleration

4. GPU acceleration

4.1. Parallelization problems in SPH

4.2. GPU optimisations

5. Multi-GPU acceleration

5.1. Dynamic load balancing

5.2. Latest optimisations in Multi-GPU

5.3. Large simulations

6. Future improvements

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

Previous ideas:

SPH is a Lagrangian model so particles are moving during simulation.

Each time step NL sorts particles (data arrays) to improve the memory access

in PI stage since the access pattern is more regular and efficient.

Another advantage is the ease to identify the particles that belongs to a cell by

using a range since the first particle of each cell is known.

Four optimizations have been applied to DualSPHysics:

• Applying symmetry to particle-particle interaction.

• Splitting the domain into smaller cells.

• Using SSE instructions.

• Multi-core implementation using OpenMP.

3. CPU acceleration

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

Applying symmetry to particle-particle interaction.

• The force exerted by a particle, i, on a neighbour particle, j, has the same

magnitude but opposite direction when the force is exerted by particle j on

neighbour i.

• The number of interactions to be evaluated can be reduced by two, which

decreases the computational time.

In 3-D, each cell only interacts

with 13 cells and partially with

itself, instead of 27 cells.

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

3. CPU acceleration

Splitting the domain into smaller cells.

• The domain is split into cells of size (2h×2h×2h) to reduce the neighbour search to

only the adjacent cells.

• But using cell size 2h in 3-D only 19% of potential neighbours are real neighbours.

• Reducing cell size in half (h), the percentage of real neighbours is increased to 31%.

The drawbacks to use h instead of 2h is:

• The number of cells is multiplied by 8 (in 3-D), increasing memory requirements.

• Each cell has to interact with 63 cells instead of 14 cells although the volume and

neighbours is lower.

0%

20%

40%

60%

0 1,000,000N

Cells 2h

Cells 2h/2

Cells 2h/3

Cells 2h/4

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

3. CPU acceleration

Using SSE instructions.

• The current CPUs have special instruction sets (SSE, SSE2, SEE3…) of SIMD type

(Single Instruction, Multiple Data) that allow performing operations on data sets.

• An explicit vectorization is applied, grouping particle interactions into packs of 4

interactions, to obtain the best performance on the CPU.

• Drawbacks: coding is quite cumbersome and automatic use of these SIMD

instructions is not always efficient.

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

3. CPU acceleration

Multi-core implementation using OpenMP.

• The current CPUs have several cores or processing units.

• OpenMP is the best option to optimize the performance for systems of shared

memory like multi-core CPUs.

• It can be used to distribute the computation load among CPU cores to

maximize the performance and to accelerate the SPH code.

• It is portable and flexible whose implementation does not involve major

changes in the code.

• The use of OpenMP in particle interaction presents 2 problems:

• Several execution threads try to modify the same memory locations

simultaneously when symmetry is applied (race conditions).

• Dynamic load balancing is necessary since the particles are not distributed

evenly.

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

3. CPU acceleration

Multi-core implementation: Asymmetric approach

• The symmetry is not applied in particle interaction to avoid concurrent access to

memory.

• The load balancing is achieved by using the dynamic scheduler of OpenMP.

• Particle cells are assigned (in blocks of 10) to the execution threads when they run

out of workload.

10-19

00-09

30-39

20-29

40-49

Boundary particle

Fluid particleCells ID

00-0300-03

20-2320-23

04-0704-07

12-1512-15

36-3936-39

44-4744-47

08-1108-11

16-1916-19

24-2724-27

28-3128-31

32-3532-35

40-4340-43

48-4948-49

Thread 0 Thread 1 Thread 2

R
u

n
tim

e
 o

f ce
ll in

te
ractio

n

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

3. CPU acceleration

Multi-core implementation: Symmetric approach

• The symmetry is applied in particle interaction.

• The concurrent memory access is avoided since each thread has its own memory

space to allocate variables where the forces on each particle are accumulated.

• Drawback: memory requirement increases by a factor of 2 when passing from 1

to 8 threads.

• The dynamic scheduler of OpenMP is also employed distributing cells in blocks of

10 among different execution threads (like asymmetric approach).

Thread 0 Thread 1 Thread 2

Position Velocity RhopId ...

pos1 vel1 rhop1id1 ...

pos2 vel2 rhop2id2 ...

posn veln rhopnidn ...

Ace Ar ...

ace1 ar1 ...

ace2 ar2 ...

acen arn ...

Ace Ar ...

ace1 ar1 ...

ace2 ar2 ...

acen arn ...

Ace Ar ...

ace1 ar1 ...

ace2 ar2 ...

acen arn ...

read-only access

read/write access

Shared memory
(particle data)

Local memory for
each thread

(interaction results)

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

3. CPU acceleration

Testcase for results

• Dam break flow impacting on a structure.

• Simulating 1.5 seconds of physical time.

Hardware and configuration for results

• Hardware: Intel® Core ™ i7 940 at 2.93 GHz (4 physical cores, 8 logical cores

with Hyper-threading), with 6 GB of DDR3 RAM memory at 1333 MHz.

• Operating system: Ubuntu 10.10 64-bit.

• Compiler: GCC 4.4.5 (compiling with the option –O3).

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

3. CPU acceleration

Speedup for different number of particles (N) when applying symmetry, the

use of SSE instructions. Two different cell sizes (2h and 2h/2) were

considered.

Using 300,000 particles, the

maximum speedup was 2.3x

using Symmetry, SSE and cell

size 2h/2.

Speedup was obtained when

compared to the version without

optimizations.
1.0

1.5

2.0

2.5

0 100,000 200,000 300,000

Sp
e

e
d

u
p

N

SSE(2h/2)

SSE(2h)

Symmetry(2h/2)

Symmetry(2h)

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

3. CPU acceleration

Speedup for different number of particles (N) with different OpenMP

implementations (using 8 logical threads) in comparison with the most

efficient single-core version (symmetry, SSE and cell size 2h/2).

Symmetric approach is the

most efficient (speedup 4.5x

using 8 threads).

Speedup was obtained when

compared to the most efficient

single-core version.

1

2

3

4

5

0 100,000 200,000 300,000
N

Symmetric

Asymmetric

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

3. CPU acceleration

Outline

1. Introduction

1.1. Why is SPH too slow?

1.2. High Performance Computing (HPC)

1.3. DualSPHysics project

2. DualSPHysics implementation

2.1. Implementation in three steps

2.2. Neighbour list approaches

3. CPU acceleration

4. GPU acceleration

4.1. Parallelization problems in SPH

4.2. GPU optimisations

5. Multi-GPU acceleration

5.1. Dynamic load balancing

5.2. Latest optimisations in Multi-GPU

5.3. Large simulations

6. Future improvements

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

GPU implementation

DualSPHysics was implemented using the CUDA programming language to run SPH

method on Nvidia GPUs.

Important: An efficient and full use of the capabilities of the GPUs is not

straightforward. It is necessary to know and to take into account the details of the

GPU architecture and the CUDA programming model.

Differences regarding the CPU implementation:

• Each GPU thread calculates the interaction between a target particle and its

neighbours.

• The symmetry is not used in particle interaction because it cannot be applied

efficiently on GPU.

Two initial GPU implementation were tested: Partial and full GPU implementation.

4. GPU acceleration

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

Partial GPU implementation

• GPU is used only in particle interaction since this part consumes over 90% of the

execution time.

• Drawback: Particle data and neighbour list information must be transferred from

CPU to GPU and the interaction results from GPU to CPU each time step.

Initial Data

Neighbour List
(NL)

Particle
Interaction (PI)

System
Update (SU)

Save Data
(occasionally)

Data transfer
CPU-GPU

Data transfer
GPU-CPU

GPU

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

4. GPU acceleration

Full GPU implementation

• GPU is used in all steps (Neighbour List, Particle Interaction and System Update).

• This approach is the most efficient since:

• All particle data is kept in GPU memory and the transfers CPU-GPU are removed.

• Neighbour List and System Update are parallelized, obtaining a speedup also in this

part of the code.

Initial Data

Neighbour List
(NL)

Particle
Interaction (PI)

System
Update (SU)

Save Data
(occasionally)

Data transfer
CPU-GPU

Data transfer
GPU-CPU

GPU

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

4. GPU acceleration

Problems in Particle Interaction step

These problems appears since each thread has to interact with different neighbours.

• Code divergence:

GPU threads are grouped into sets of 32 (warps) which execute the same operation

simultaneously. When there are different operations in one warp these operations are

executed sequentially, giving rise to a significant loss of efficiency.

• No coalescent memory accesses:

The global memory of the GPU is accessed in blocks of 32, 64 or 128 bytes, so the number

of accesses to satisfy a warp depends on how grouped data are. In SPH a regular memory

access is not possible because the particles are moved each time step.

• No balanced workload:

Warps are executed in blocks of threads. To execute a block some resources are assigned

and they will not be available for other blocks till the end of the execution. In SPH the

number of interactions is different for each particle so one thread can be under execution,

keeping the assigned resources, while the rest of threads have finished.

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

4.1. Parallelization problems in SPH

• Code divergence:

GPU threads are grouped into sets of 32 (warps) which execute the same

operation simultaneously. When there are different operations in one warp these

operations are executed sequentially, giving rise to a significant loss of efficiency.

32 threads executing the

 same task over 32 values

32 threads executed

simultaneously

NO DIVERGENT WARPS

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

Problems in Particle Interaction step

4.1. Parallelization problems in SPH

• Code divergence:

GPU threads are grouped into sets of 32 (warps) which execute the same

operation simultaneously. When there are different operations in one warp these

operations are executed sequentially, giving rise to a significant loss of efficiency.

32 threads executing

three different tasks (IF)

over 16 values

execution of the 32 threads

will take the runtime needed to carry out the

three tasks sequentially

+ +

DIVERGENT WARPS !!!

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

Problems in Particle Interaction step

4.1. Parallelization problems in SPH

• No coalescent memory accesses:

The global memory of the GPU is accessed in blocks of 32, 64 or 128 bytes, so

the number of accesses to satisfy a warp depends on how grouped data are. In

SPH a regular memory access is not possible because the particles are moved each

time step.

16 threads executing

over 16 values

16 values stored in

16 consecutive memory positions

COALESCED ACCESS

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Only 1 access to

memory is required

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

Problems in Particle Interaction step

4.1. Parallelization problems in SPH

• No coalescent memory accesses:

The global memory of the GPU is accessed in blocks of 32, 64 or 128 bytes, so

the number of accesses to satisfy a warp depends on how grouped data are. In

SPH a regular memory access is not possible because the particles are moved each

time step.

16 threads executing

over 16 values

16 values stored in no

consecutive memory positions

NON COALESCED ACCESS

0

1

2

3

4

5

45

46

47

48

56

57

13

14

15

16

4 memory accesses

are required

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

Problems in Particle Interaction step

4.1. Parallelization problems in SPH

• No balanced workload:

Warps are executed in blocks of threads. To execute a block some resources are

assigned and they will not be available for other blocks till the end of the

execution. In SPH the number of interactions is different for each particle so one

thread can be under execution, keeping the assigned resources, while the rest of

threads have finished.

20 neighbours 12 neighbours 7 neighbours

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

Problems in Particle Interaction step

4.1. Parallelization problems in SPH

Five optimizations have been applied to DualSPHysics to avoid or

minimize the problems previously described.

• Maximizing the occupancy of GPU.

• Reducing global memory accesses.

• Simplifying the neighbour search.

• Adding a more specific CUDA function of interaction.

• Division of the domain into smaller cells.

4.2. GPU optimisations

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

Maximizing the occupancy of GPU

• Occupancy is the ratio of active warps to the maximum number of warps supported

on a multiprocessor of the GPU or Streaming Multiprocessor (SM).

• It is essential to have the largest number of active warps in order to hide the

latencies of memory access since the access to the GPU global memory is irregular.

0%

20%

40%

60%

80%

100%

16 24 32 40 48 56 64
Registers

sm12-13 (256 threads)
sm20-21 (256 threads)
sm30-32 (256 threads)
sm12-13 (varying threads)
sm20-21 (varying threads)
sm30-32 (varying threads)

For example, using a GPU with

compute capability 1.3 (sm13) for

35 registers.

The occupancy is

 25% using 256 threads per block

but can be

 44% using 448 threads.

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

CUDA 6.5 includes several runtime functions to help in

occupancy calculations and launch configuration

4.2. GPU optimisations

Reducing global memory accesses

• The number of memory accesses in the interaction kernel can be reduced by

− grouping some arrays used in particle interaction (pos+press and vel+rhop

are combined to create two arrays of 16 bytes each one).

− avoid reading values that can be calculated from other variables (csound

and tensil are calculated from press).

• The number of accesses to the global memory of the GPU is reduced from 6 to

2 and the volume of data to be read from 40 to 32 bytes.

 Variable Size (bytes) Description

pos 3 x 4 Position in X,Y and Z

vel 3 x 4 Velocity in X,Y and Z

rhop 4 Density

csound 4 Speed of sound

prrhop 4 Ratio between pressure and density

tensil 4 Tensile correction following

Variable Size (bytes) Description

pos+press 4 x 4 Position + Pressure

vel+rhop 4 x 4 Velocity + Density

csound 0 Calculated from press

prrhop 0 Calculated from press

tensil 0 Calculated from press

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

4.2. GPU optimisations

Simplifying the neighbour search

• Each particle has to interact with particles in surrounding cells (27 cells).

• These 27 cells can be defined as 9 ranges of particles since particles in adjacent

cells are in consecutive memory positions.

• The neighbour search can be optimised using these ranges instead of cells.

• Drawback: Extra 144 bytes needed per cell.

Each particle

interacts with

27 cells

Each particle

interacts with

9 ranges

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

4.2. GPU optimisations

Adding a more specific CUDA function of interaction

• Initially, the same CUDA kernel was used to calculate all interaction forces

boundary-fluid (B-F), fluid-boundary (F-B) and fluid-fluid (F-F).

• Is more efficient use a specific kernel for the B-F interaction because this

interaction is simpler and it can be optimised.

• To minimise the access to the global memory of the GPU the interaction F-F and

F-B can be merged in one kernel execution. Thus the particle data and result data

of each thread is loaded and saved once instead twice.

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

4.2. GPU optimisations

Division of the domain into smaller cells

• It is the same optimization used in CPU implementation.

• Reducing cell size in half (h), the percentage of real neighbours is increased to 31%.

• Drawback: The memory requirements increases because the number of cells is 8

times higher and the number of ranges of particles to be evaluated in the neighbour

search increases from 9 to 25 (using 400 bytes per cell).

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

4.2. GPU optimisations

Testcase for results

• Dam break flow impacting on a structure.

• Simulating 1.5 seconds of physical time.

Hardware for results

Number
of cores

Processor
clock

Memory
space

Compute
capability

Intel Xeon X5500 1-8 2.67 GHz

Tesla 1060 240 1.30 GHz 4 GB 1.3

GTX 480 480 1.40 GHz 1.5 GB 2.0

GTX 680 1536 1.14 GHz 2 GB 3.0

Tesla K20 2496 0.71 GHz 5 GB 3.5

GTX Titan 2688 0.88 GHz 6 GB 3.5

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

4.2. GPU optimisations

Computational runtimes (in seconds) using GTX 480 for different GPU

implementations (partial, full and optimized) when simulating 500,000

particles.

Full GPU is 1.26x

faster than Partial

GPU.

Optimized GPU is

2.12x faster than

Partial GPU.

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

4.2. GPU optimisations

Improvement achieved on GPU simulating 1 million particles when

applying the different GPU optimisations using GTX 480 and Tesla 1060.

Speedup of fully optimized

GPU code over GPU code

without optimizations is:

1.65x for GTX 480

2.15x for Tesla 1060

0%

20%

40%

60%

80%

100%

120%

GTX 480 Tesla 1060

Division of the domain into
smaller cells

Adding a more specific CUDA
kernel of interaction

Simplifying the neighbour
search

Reducing global memory
accesses

Maximizing the occupancy of
GPU

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

4.2. GPU optimisations

Runtime for CPU and different

GPU cards.

0

2

4

6

8

10

0 4,000,000 8,000,000 12,000,000

R
u

n
ti

m
e

 (
h

)

N

CPU Single-core

CPU 8 cores

GTX 480

GTX 680

GTX Titan

GTX
480

GTX
680

Tesla
K20

GTX
Titan

vs CPU 8 cores 13 16 17 24

vs CPU Single-core 82 102 105 149

0

30

60

90

120

150

Speedups of GPU against CPU

simulating 1 million particles.

After optimising the performance of DualSPHysics on CPU and GPU...

The most powerful GPU (GTX Titan) is 149 times faster than CPU (single core execution)

and 24 times faster than the CPU using all 8 cores.

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

4.2. GPU optimisations

The simulation of real cases implies huge domains with a high resolution, which

implies simulating tens or hundreds of million particles.

The use of one GPU presents important limitations:

- Maximum number of particles depends on the memory size of GPU.

- Time of execution increases rapidly with the number of particles.

0

8

16

24

32

40

GTX 480 GTX 680 Tesla K20 Tesla M2090 GTX Titan

Maximum number of particles (millions)

0

4

8

12

16

20

0 2 4 6 8 10 12 14 16 18 20

Particles (millions)

Runtime (hours)

GTX 480
GTX 680
GTX Titan

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

4.2. GPU optimisations

Outline

1. Introduction

1.1. Why is SPH too slow?

1.2. High Performance Computing (HPC)

1.3. DualSPHysics project

2. DualSPHysics implementation

2.1. Implementation in three steps

2.2. Neighbour list approaches

3. CPU acceleration

4. GPU acceleration

4.1. Parallelization problems in SPH

4.2. GPU optimisations

5. Multi-GPU acceleration

5.1. Dynamic load balancing

5.2. Latest optimisations in Multi-GPU

5.3. Large simulations

6. Future improvements

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

GPU
480 cores

GPU
480 cores

OpenMP

CUDA

MPI

CPU
6 cores

GPU
480 cores

CPU
6 cores

CPU
6 cores

MPI is used to combine resources of multiple machines connected via network.

The physical domain of the simulation is divided among the different MPI processes.

Each process only needs to assign resources to manage a subset of the total amount of

particles for each subdomain.

5. Multi-GPU implementation N×

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

The use of MPI implies an overcost:

 - Communication: Time dedicated to the interchange of data between processes.

 - Synchronization: All processes must wait for the slowest one.

Solutions:

 - Overlapping between force computation and communications: while data is

transferred between processes, each process can compute the force interactions among its

own particles. In the case of GPU, the CPU-GPU transfers can also be overlapped with

computation using streams and pinned memory.

 - Load balancing. A dynamic load balancing is applied to minimise the difference

between the execution times of each process.

N×

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

5. Multi-GPU implementation

Due to the nature Lagrangian of the SPH method, is necessary to balance the load

throughout the simulation.

FIRST approach according to the number of fluid particles

The number of particles must be redistributed after some time steps to get the

workload balanced among the processes and minimise the synchronisation time.

SECOND approach according to the required computation time of each device

Enables the adaptation of the code to the features of a heterogeneous cluster

achieving a better performance.

N× 5.1. Dynamic load balancing

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

Hardware:
GTX
680

GTX
480

GTX
285

0 5 10 15

3 GPUs (bal. time)

3 GPUs (bal. particles)

GTX 680

GTX 480

GTX 285

runtime (h)

N×

Results using one GPU and several GPUs with dynamic load balancing

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

5.1. Dynamic load balancing

Results using one GPU and several GPUs with dynamic load balancing

• Using the fastest GPU (GTX 680) 5.8 hours

• Using three different GPUs

 According to the number of fluid particles 4.6 hours

 According to the required computation time 2.8 hours

0 5 10 15

3 GPUs (bal. time)

3 GPUs (bal. particles)

GTX 680

GTX 480

GTX 285

The second approach is 1.7x faster than first approach

and 2.1x faster than one GPU.

N×

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

5.1. Dynamic load balancing

Removing buffers during MPI communication:

In the previous version, to send data from CPU to GPU, data were initially transferred

in variables pos, vel, rhop and then were copied in a buffer and this buffer was sent

with MPI. To receive from GPU to CPU, data are received grouped in a buffer, then

copied to variables on CPU (pos, vel, rhop) and these variables are transferred to GPU.

Now, instead of copying GPU data into CPU variables, data is directly copied in the

buffer that will be sent with MPI. When receiving data, all are grouped in a buffer and

they are copied from the buffer to the GPU variables. Thus, data are not copied in

variables pos, vel, rhop of CPU.

Process 0

GPU memory

HEAD

POS

VEL

RHOP

Data to
send

P
O
S

V
E
L

R
H
O
P

Data of selected
particles

P
O
S

Data of particles

V
E
L

R
H
O
P

CPU memory GPU memory

P
O
S

Data of particles

V
E
L

R
H
O
P

HEAD

POS

VEL

RHOP

Data
received

P
O
S

V
E
L

R
H
O
P

Data of selected
particles

CPU memory

Process 1

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

5.2. Latest optimisations in Multi-GPU

Use of pinned memory for faster CPU-GPU transfers :

The memory of CPU that will be used for transfers with GPUs is pinned memory. In

this way, the operative system will keep available that memory in RAM memory.

Transfers between GPU and pinned memory are twice faster.

GPU
memory

CPU
memory

Process 0

CPU
memory

GPU
memory

Process 1

x2 x2

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

5.2. Latest optimisations in Multi-GPU

Overlap between CPU-GPU transfers and GPU computing:

In the previous version, transfers between CPU and GPU were always synchronous,

so the process waits since the transfer is requested until it is completed.

This does not mean that there was no overlap with the background processes that are

responsible for receiving and sending data in MPI.

Now asynchronous CPU-GPU transfers and CUDA streams are used to overlap GPU

calculation with data transfers are also employed.

Force computation on GPU

Reception of halo

Copy halo to GPU

Execution time

Force computation on GPU

Reception of halo Copy halo to GPU

Execution time

Before Now

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

5.2. Latest optimisations in Multi-GPU

Overlap between internal force computation and reception of two halos:

In the previous version, the computation of forces of the particles of a process

(lasting long) was overlapped only with the reception of the first halo, while the

reception of the second halo was overlapped only with computation of first halo

(much shorter). Thus, the first halo overlapped well but not the second one.

Now, thanks to the use of asynchronous CPU-GPU transfers, the reception of both

halos overlaps with the internal force computation since it is possible to complete the

reception (copy data to GPU) while forces on GPU are being computed.

Halo-2 computationHalo-2 to GPU
Reception of halo-2

Halo-1 to GPU

Internal force computation

Reception of halo-1

Execution time

Halo-1 computation

Before

Reception of halo-2

Halo-1 computation

Halo-2 computation

Halo-2 to GPU

Halo-1 to GPU

Internal force computation

Reception of halo-1

Now

Execution time

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

5.2. Latest optimisations in Multi-GPU

Testcase for results

• Dam break flow.

• Physical time of simulation is 0.6 seconds.

• The number of used particles varies from 1M to 1,024M particles.

N×

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

5.2. Latest optimisations in Multi-GPU

Results of efficiency

The simulations were carried out in the Barcelona Supercomputing Center BSC-

CNS (Spain). This system is built with 256 GPUs Tesla M2090.

All the results presented here were obtained single precision and Error-correcting

code memory (ECC) disabled.

Activity at BARCELONA SUPERCOMPUTING CENTER:

“Massively parallel Smoothed Particle Hydrodynamics scheme using GPU clusters”

N×

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

5.2. Latest optimisations in Multi-GPU

0

32

64

96

128

0 32 64 96 128

GPUs

Speedup - Weak scaling

1M/Gpu
4M/Gpu
8M/Gpu
Ideal

Efficiency close to 100% simulating 4M/GPU

with 128 GPUs Tesla M2090 of BSC.

This is possible because the time dedicated to

tasks exclusive of the multi-GPU executions

(communication between processes, CPU-GPU

transfers and load balancing) is minimum.

N×

ref

ref

NNT

NNT
NS






)(

)(
)(

N

NS
NE

)(
)(

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

5.2. Latest optimisations in Multi-GPU

0%

3%

6%

9%

12%

0 32 64 96 128
GPUs

1M/gpu (new) 1M/gpu (old)
4M/gpu (new) 4M/gpu (old)
8M/gpu (new) 8M/gpu (old)

Percentage of time dedicated to tasks exclusive of the multi-GPU

executions including the latest improvements (solid line).

The latest improvements have reduced this percentage by half for different

number of GPUs and different number of particles

N×

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

5.2. Latest optimisations in Multi-GPU

dp= 6 cm, h= 9 cm

np = 1,015,896,172 particles

nf = 1,004,375,142 fluid particles

physical time= 12 sec

of steps = 237,065 steps

runtime = 79.1 hours

using 64 GPUs Tesla M2090 of the BSC-CNS

64×

Simulation of 1 billion SPH particles

Large wave interaction with oil rig using 10^9 particles

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

5.3. Large simulations

Simulación de un billón de partículas SPH

Video link:
https://youtu.be/B8mP9E75D08

https://youtu.be/B8mP9E75D08
https://youtu.be/B8mP9E75D08
https://youtu.be/B8mP9E75D08

32×

Simulation of a real case

Using 3D geometry of the beach Itzurun in Zumaia-Guipúzcoa (Spain) in Google Earth

32 x M2090 (BSC)

Particles: 265 Millions

Physical time: 60 seconds

Steps: 218,211

Runtime: 246.3 hours

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

5.3. Large simulations

Video links:
https://youtu.be/nDKlrRA_hEA

https://youtu.be/kWS6-0Z_jIo

https://youtu.be/nDKlrRA_hEA
https://youtu.be/kWS6-0Z_jIo
https://youtu.be/kWS6-0Z_jIo
https://youtu.be/kWS6-0Z_jIo

Outline

1. Introduction

1.1. Why is SPH too slow?

1.2. High Performance Computing (HPC)

1.3. DualSPHysics project

2. DualSPHysics implementation

2.1. Implementation in three steps

2.2. Neighbour list approaches

3. CPU acceleration

4. GPU acceleration

4.1. Parallelization problems in SPH

4.2. GPU optimisations

5. Multi-GPU acceleration

5.1. Dynamic load balancing

5.2. Latest optimisations in Multi-GPU

5.3. Large simulations

6. Future improvements

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

Decomposition in 2D and 3D for Multi-GPU

• Now only 1D but 2D and 3D will be implemented in the future.

• 1D approach is correct when the domain of simulation is very narrow but this

approach is not well adapted to other domains.

• A 2D and 3D decomposition is necessary for a better distribution of the work load

when using hundreds of GPUs.

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

N× 6. Future improvements

Example of the 2D decomposition we are working on

Variable resolution (splitting & coalescing)

• Variable resolution is imperative to simulate large problems with SPH.

• Higher resolution is only used where it is necessary, to reduce the number of

particles to simulate.

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

Splitting
Coalescing

6. Future improvements

Coupling between SWASH and SPH

• The study of wave propagation from deep ocean to near shore is difficult using a

single model because multiple scales are present both in time and in space.

• A hybrid model is necessary to combine capabilities of a wave propagation model

(SWASH) and DualSPHysics.

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

6. Future improvements

Video link:
https://youtu.be/OzPjy2aMuKo

https://youtu.be/OzPjy2aMuKo

Optimisation and SPH Tricks

José Manuel Domínguez Alonso

jmdominguez@uvigo.es

EPHYSLAB, Universidade de Vigo, Spain

+

mailto:jmdominguez@uvigo.es

