

3-D SPH Modelling of Sediment Scouring Induced by Rapid Flows

G. Fourtakas

School of Mechanical, Aerospace and Civil Engineering, University of Manchester, UK

DualSPHysics User Workshop, 6-7 December 2016

Outline of the presentation

- Motivation
- Eulerian schemes and multi-phase flows
- Multi-phase model
 - Liquid sediment model
 - Yield criteria
 - Constitutive equations
 - Sediment suspension
- GPU implementation
- Validation and applications
- Conclusions

Motivation

apu **DualSPHysics**

- Real life engineering problems Ο
 - Underwater sand bed trenching 0
 - Local scour around structures 0
 - Suspension of hazardous materials 0
- **UK Nuclear industry application** Ο
 - Industrial tank 0
 - Hazardous material 0
 - Sediment agitation 0
 - Submerged jets 0

Courtesy of the National Nuclear Laboratory, UK

Traditional CFD methods (Eulerian)

Grid based methods

- Mesh generation can be expensive
- Mesh refinement in areas of interest (some knowledge a priori)
- Not applicable to highly non-linear deformations, (or very expensive)
- Multi-phase, free surfaces and phase-change flows

Multi-phase model

Liquid – sediment model

- Liquid phase
 - $\circ\,$ Newtonian flow
- Sediment phase
 - \odot Yield criteria
 - Surface yielding
 - \circ Sediment skeleton pressure
 - Non-Newtonian flow
 - $\,\circ\,$ Sediment shear layer at the interface
 - Seepage forces
 - \circ Sediment resuspension
 - $\circ\,$ Entrainment of soil grains by the liquid

Multi-phase model

Liquid phase

- Weakly compressible SPH (WCSPH)
 - Tait's equation of state to relate pressure to density
 - \circ δ -SPH Density diffusion term
- Particle shifting Particle re-ordering
- Turbulence is modelled through a SPS model
- GPU implementation to DualSPHysics

 ∂W_{ij}

Liquid phase

- Newtonian constitutive equation
 - $\circ~$ Single phase DualSPHysics

$$\frac{d\mathbf{u}}{dt} = -\frac{1}{\rho} \frac{\partial P}{\partial \mathbf{x}} + \nu \nabla^2 \mathbf{u} + \mathbf{g} + SPS \longrightarrow \frac{d\mathbf{u}_i}{dt} = -\sum_j^N m_j \left(\frac{P_j + P_i}{\rho_j \rho_i}\right) \nabla W_{ij} + \sum_j^N \frac{m_j}{\rho_j \rho_i} \left(\mu_j + \mu_i\right) \mathbf{u}_{ij} \frac{\mathbf{x}_{ij} \cdot \nabla W_{ij}}{x_{ij}^2 + \eta^2} + \mathbf{g} + SPS$$

 $\circ~$ Multi-phase implementation

$$\frac{d\mathbf{u}}{dt} = \frac{1}{r} \frac{\P S}{\P \mathbf{x}} + \mathbf{g} \longrightarrow \frac{d\mathbf{u}}{dt} = -\frac{1}{\rho} \frac{\partial P}{\partial \mathbf{x}} + \frac{1}{\rho} \frac{\partial \tau}{\partial \mathbf{x}} + \mathbf{g}$$

$$\frac{1}{\rho} \frac{\partial \tau_i^{\alpha\beta}}{\partial x^{\beta}} = \sum_j^N m_j \left(\frac{\tau_i^{\alpha\beta} + \tau_j^{\alpha\beta}}{\rho_i \rho_j} \right) \frac{\partial W_{ij}}{\partial x_i^{\beta}} \qquad \text{since} \qquad \tau_i^{\alpha\beta} = f(\varepsilon_i^{\alpha\beta})$$

$$\varepsilon_{i}^{\alpha\beta} = \frac{1}{2} \left(\frac{\partial u_{i}^{\alpha}}{\partial x_{i}^{\beta}} + \frac{\partial u_{i}^{\beta}}{\partial x_{i}^{\alpha}} \right) - \frac{1}{3} \left(\frac{\partial u_{i}^{\gamma}}{\partial x_{i}^{\gamma}} \right) \delta^{\alpha\beta} \qquad \text{from} \qquad \frac{\partial u^{\alpha}}{\partial x^{\beta}} \bigg|_{i} = \sum_{j}^{N} \frac{m_{j}}{\rho_{j}} u_{ij}^{\alpha}$$

Multi-phase model

Sediment phase

- Treated as a semi-solid non-Newtonian fluid
- Yield criterion Drucker-Prager
 - Below a critical level of sediment deformation sediment particles remain still
 - Above a critical level of sediment deformation follow the governing equations
- Non-Newtonian flow
 - Herschel-Bulkley-Papanastasiou Bingham constitutive model
- Approximation of seepage forces on the surface
 - \circ Darcy law
- Entrained suspended sediment
 - Concentration based apparent viscosity based on a Newtonian formulation, Vand model

niversi

The Univ of Manc

Sediment phase

Surface Yielding

- Drucker-Prager (DP) yield criterion
 - $\circ\,$ For an isotropic material

$$\sqrt{J_2} - \left| \tau_y \right| = 0$$

 \circ Apply the yield criterion

$$\left|\tau_{y}\right| = -\alpha \mathbf{I}_{1} + \kappa$$

 \circ Yielding occurs when

$$\sqrt{J_2} \ge \alpha P_{skeleton} + \kappa$$

<u>Constants</u>

$$\alpha = \frac{\tan \phi}{\sqrt{9 + 12 \tan^2 \phi}} \qquad \kappa = \frac{3c}{\sqrt{9 + 12 \tan^2 \phi}}$$

where c is the cohesion and φ angle of repose

 σ_3

Drucker-Prager (DP) yield surface in principal stress space

Sediment phase

The University of Mancheste

Ο

- Sediment skeleton pressure
 - $\circ~$ For a fully saturated soil
 - \circ Terzaghi relationship

$$P_{total} = P_{skeleton} + P_{pw}$$

 \circ or

$$P_{total} = h_w \gamma_w + h_s \gamma'_{sat}$$

 $\circ\,$ Pore water pressure

Sediment skeleton pressure

$$P_{skeleton} = P_t - P_{pw}$$

Sediment phase

- The Universit of Manchest O
- Sediment constitutive equation
 - Simple Bingham

$$\mu_{Bingh} = \frac{\left|\tau_{y}\right|}{\sqrt{\Pi_{D}}} + \mu_{d}$$

- Herschel-Bulkley-Papanastasiou (HBP)
 - Viscous Plastic (*m* exponential growth)
 - Shear thinning or thickening (*n* power law)

$$\mathcal{M}_{pap} = \frac{\left| t_{y} \right|}{\sqrt{\left| 1_{D} \right|}} \stackrel{\text{e}}{=} 1 - e^{-m\sqrt{\left| 1_{D} \right|}} \stackrel{\text{u}}{\stackrel{\text{u}}{\stackrel{\text{t}}{\mid}}} + KD^{(n-1)/2}$$

$$\downarrow$$

$$\tau_{i}^{\alpha\beta} = 2\mu_{pap}D^{\alpha\beta} \longrightarrow D^{\alpha\beta} = \frac{1}{2} \left(\frac{\partial u^{\alpha}}{\partial x^{\beta}} + \frac{\partial u^{\beta}}{\partial x^{\alpha}} \right)$$

Sediment phase

 $\frac{\text{Inflow}}{k} = \frac{n_r \gamma_w}{k} \quad \text{(Soil properties)}$

SPH formalism

○ Seepage force

$$S_{s,i}^{a} = \bigcap_{j \in W, Sat}^{N} \frac{m_{j}}{\Gamma_{i} \Gamma_{j}} S_{ij}^{a} W_{ij}$$

 \circ Suspension

Vand equation

$$\mu_{susp} = \mu_{fluid} e^{\frac{2.5c_v}{1 - \frac{39}{64}c_v}} \qquad c_v \le 0.3$$

<u>Concentration volume</u> <u>fraction of sediment</u>

$$c_{v,i} = \frac{\sum_{j_{sat} \in 2h}^{N} \frac{m_j}{\rho_j}}{\sum_{j \in 2h}^{N} \frac{m_j}{\rho_j}}$$

GPU implementation in DualSPHysics

○ Multi-phase issues

- \circ Branching
- Registers
- Arithmetic operations
- $\,\circ\,$ Larger data size
- Resolve
 - Memory operations
 - Smaller kernels
 - $\circ\,$ Combine similar operations

GPU algorithm speed up curve (x58 compared to a single thread CPU)

Numerical results

Soil Dam break

Bui *et al.*, Langrangian method for large deformation and failure flows of geomaterial, 2008

Sediment block collapse

Lude *et al.*, Axisymmetric collapses of granular columns, 2014

Numerical results

Case definition

Erodible Dam break

Spinewine *et al.*, Intense bed-load due to sudden dam break, 2013

Parameter	Value	Units
Liquid height	0.1	m
Sediment height	0.6	m
Density ratio	1.54	
Porosity		
Numerical cohesion	100	Ра
Sediment viscosity	500	Pa.se c
<i>m</i> (HBP)	100	
<i>n</i> (HBP)	1.6	
Runtime	1.5	sec
No. Particle	328 000	

Qualitative comparison of (a) experimental and (b) current numerical results and (c) comparison of liquid-sediment profiles of the experiments, numerical results of Ulrich *et al.* and current model at t = 0.25 s.

Qualitative comparison of (a) experimental and (b) current numerical results and (c) comparison of liquid-sediment profiles of the experiments, numerical results of Ulrich *et al*. and current model at t = 0.50 s.

Qualitative comparison of (a) experimental and (b) current numerical results and (c) comparison of liquid-sediment profiles of the experiments, numerical results of Ulrich *et al*. and current model at t = 0.75 s.

Qualitative comparison of (a) experimental and (b) current numerical results and (c) comparison of liquid-sediment profiles of the experiments, numerical results of Ulrich *et al*. and current model at t = 1.00 s.

In University Manchester

Numerical results

Case definition

Soares-Frazão, S., et al., Dam-break flows over mobile beds., 2013

iversi

3-D Erodible dam break

 \circ Sediment bed profile at *t* = 20 s

\circ Water level elevation video

Water level elevation from 0 to 20 s

Water level at probe US1

Water level at probe US6

Current developments

But..

We can do better!!!

- Sediment is eroded due to:
 - Shear forces at the interface
 - Turbulence at the interface
- Shield's yield criterion (Zubeldia et al, 2016, SPHERIC workshop)

Current developments

(Zubeldia et al, 2016)

Shields erosion

criterion

Current developments

(Zubeldia et al, 2016)

$$\theta_{cr} = \frac{\tau_{b,cr,0}}{(\rho_s - \rho)gd} = f(\operatorname{Re}_*)$$

Calulate (u_*)

$$u_* \to \operatorname{Re}_* \to \theta_{cr} \to \tau_{b,cr,0}$$

Current developments

(Zubeldia et al, 2016)

UnB

Conclusions

- A novel sediment model has been presented and implemented in DualSPHysics with improvements to the yielding, shear layer constitutive modelling and sediment resuspension
- Good speed up characteristics achieved by the multi-phase GPU implementation (x58)
- The 2-D and 3-D results where in good agreement with the experimental data especially for the 3-D case:
 - The sediment profile at different locations
 - The water level elevation at the probe locations
- Future work
 - Inclusion of more physics, Shield's criterion (in progress)
 - Turbulence modelling (cheaper mixing length / RANS model) (Next development)

Executable available in DualSPHysics package!!!

Thank you

Acknowledgments

- o U-Brasilia: Eliza Zubeldia, Márcio Muniz de Farias
- o NNL: Brendan Perry, Steve Graham
- U-Man: Athanasios Mokos, Stephen Longshaw, Steve Lind, Abouzied Nasar, Peter Stansby
- U-Vigo: Jose Dominguez, Alex Crespo, Anxo Barreiro, Moncho Gomez-Gesteira
- o U-Parma: Renato Vacondio

Websites

- o http://www.dual.sphysics.org/
- o https://wiki.manchester.ac.uk/sphysics
- o http://www.mace.manchester.ac.uk/...sph

