References


REFERENCE PAPER: 

Crespo AJC, Domínguez JM, Rogers BD, Gómez-Gesteira M, Longshaw S, Canelas R, Vacondio R, Barreiro A, García-Feal O. 2015. DualSPHysics: open-source parallel CFD solver on Smoothed Particle Hydrodynamics (SPH). Computer Physics Communications, 187: 204-216. doi: 10.1016/j.cpc.2014.10.004.


USER GUIDE: 

DualSPHysics team. 2016. User DualSPHysics_v4.0_GUIDE.

 

PAPERS: 

2017 

Altomare C, Domínguez JM, Crespo AJC, González-Cao J, Suzuki T, Gómez-Gesteira M, Troch P. 2017. Long-crested wave generation and absorption for SPH-based DualSPHysics model. Coastal Engineering, 127: 37-54 doi: 10.1016/j.coastaleng.2017.06.004.

Canelas RB, Domínguez JM, Crespo AJC, Gómez-Gesteira M, Ferreira RML. 2017. Resolved Simulation of a Granular-Fluid Flow with a Coupled SPH-DCDEM Model. Journal of Hydraulic Engineering, 143 (9), art. no.06017012. doi: 10.1061/(ASCE)HY.1943-7900.0001331.

Crespo AJC, Altomare C, Domínguez JM, González-Cao J, Moncho Gómez-Gesteira M. 2017. Towards simulating floating offshore Oscillating Water Column converters with Smoothed Particle Hydrodynamics. Coastal Engineering, 126: 11-16. doi.org/10.1016/j.coastaleng.2017.05.001.

2016 

Mokos A, Rogers BD, Stansby PK. 2016. A multi-phase particle shifting algorithm for SPH simulations of violent hydrodynamics with a large number of particles. Journal of Hydraulic Research. Published online. doi.org/10.1080/00221686.2016.1212944.

Barreiro A, Crespo AJC, Domínguez JM, García-Feal O, Zabala I, Gómez-Gesteira M. 2016. Quasi-Static Mooring solver implemented in SPH. Journal of Ocean Engineering and Marine Energy, 2(3): 381-396. doi: 10.1007/s40722-016-0061-7.

Fourtakas G, Rogers BD. 2016. Modelling multi-phase liquid-sediment scour and resuspension induced by rapid flows using Smoothed Particle Hydrodynamics (SPH) accelerated with a graphics processing unit (GPU). Advances in Water Resources, 92: 186-99. doi:10.1016/j.advwatres.2016.04.009.

Vacondio R, Rogers BD, Stansby .K, Mignosa P. 2016. Variable resolution for SPH in three dimensions: Towards optimal splitting and coalescing for dynamic adaptivity. Computer Methods in Applied Mechanics and Engineering, 300: 442-460. April. doi: 10.1016/j.cma.2015.11.021.

Mayoral-Villa E, Alvarado-Rodríguez CE, Klapp J, Gómez-Gesteira M, Sigalotti LDG. 2016. Smoothed particle hydrodynamics: Applications to migration of radionuclides in confined aqueous systems. Journal of Contaminant Hydrology, 187: 65–78. doi:10.1016/j.jconhyd.2016.01.008

Canelas RB, Crespo AJC, Domínguez JM, Ferreira RML and Gómez-Gesteira. 2016. SPH-DCDEM model for arbitrary geometries in free surface solid-fluid flows. Computer Physics Communications, 202: 131-140. doi:10.1016/j.cpc.2016.01.006.

Heller V, Bruggemann M, Spinneken J, Rogers BD. 2016. Composite modelling of subaerial landslide–tsunamis in different water body geometries and novel insight into slide and wave kinematics. Coastal Engineering, 109: 20–41. doi:10.1016/j.coastaleng.2015.12.004.

Pringgana G, Cunningham LS, Rogers BD. 2016. Modelling of tsunami-induced bore and structure interaction. Proceedings of the Institution of Civil Engineers: Engineering and Computational Mechanics, 169(3): 109-125. doi:10.1680/jencm.15.00020.

2015 

Altomare C, Domínguez JM, Crespo AJC, Suzuki T, Caceres I, Gómez-Gesteira M. 2015Hybridisation of the wave propagation model SWASH and the meshfree particle method SPH for real coastal applications. Coastal Engineering Journal, 57(4): 1550024. doi:10.1142/S0578563415500242.

Mokos A, Rogers BD, Stansby PK, Domínguez JM. 2015. Multi-phase SPH modelling of violent hydrodynamics on GPUs. Computer Physics Communications, 196: 304-316. doi: 10.1016/j.cpc.2015.06.020.

Canelas RB, Domínguez JM, Crespo AJC, Gómez-Gesteira M, Ferreira RML. 2015. A Smooth Particle Hydrodynamics discretization for the modelling of free surface flows and rigid body dynamics. International Journal for Numerical Methods in Fluids, 78: 581-593. doi: 10.1002/fld.4031.

Fourtakas G, Vacondio R, Rogers BD. 2015. On the approximate zeroth and first-order consistency in the presence of 2-D irregular boundaries in SPH obtained by the virtual boundary particle methods. International Journal for Numerical Methods in Fluids, 78: 475-501. doi: 10.1002/fld.4026.

Longshaw SM, Rogers BD. 2015. Automotive Fuel Cell Sloshing Under Temporally and Spatially Varying High Acceleration Using GPU Based Smoothed Particle Hydrodynamics (SPH). Advances in Engineering Software, 83: 31–44. doi:10.1016/j.advengsoft.2015.01.008.

Altomare C, Crespo AJC, Domínguez JM, Gómez-Gesteira M, Suzuki T, Verwaest T. 2015. Applicability of Smoothed Particle Hydrodynamics for estimation of sea wave impact on coastal structures. Coastal Engineering, 96: 1-12. doi:10.1016/j.coastaleng.2014.11.001.

Aureli F, Dazzi S, Maranzoni A, Mignosa P, Vacondio R. 2015. Experimental and numerical evaluation of the force due to the impact of a dam-break wave on a structure. Advances in Water Resources, 76: 29-42. doi:10.1016/j.advwatres.2014.11.009.

2014 

Cunningham LS, Rogers BD, Pringgana G. 2014. Tsunami wave and structure interaction: An investigation with smoothed-particle hydrodynamics. Proceedings of the Institution of Civil Engineers: Engineering and Computational Mechanics, 167(3): 106-116. doi:10.1680/eacm.13.00028 (winner of the 2014 EACM Best Paper Award).

Barreiro A, Domínguez JM, Crespo AJC, González-Jorge H, Roca D, Gómez-Gesteira M. 2014. Integration of UAV photogrammetry and SPH modelling of fluids to study runoff on real terrains. PLoS ONE, 9(11): e111031. doi:10.1371/journal.pone.0111031.

Altomare C, Crespo AJC, Rogers BD, Domínguez JM, Gironella X, Gómez-Gesteira M. 2014. Numerical modelling of armour block sea breakwater with Smoothed Particle Hydrodynamics. Computers and Structures, 130: 34-45. doi:10.1016/j.compstruc.2013.10.011.

2013 

Vacondio R, Mignosa P, Pagani S. 2013. 3D SPH numerical simulation of the wave generated by the Vajont rockslide. Advances in Water Resources, 59: 146-156. doi:10.1016/j.advwatres.2013.06.009.

Fourtakas G, Rogers BD, Laurence DRP. 2013. Modelling Sediment resuspension in Industrial tanks using SPH. La Houille Blanche, 2: 39-45. doi:10.1051/lhb/2013014.

Domínguez JM, Crespo AJC, Valdez-Balderas D, Rogers BD. and Gómez-Gesteira M. 2013. New multi-GPU implementation for Smoothed Particle Hydrodynamics on heterogeneous clusters. Computer Physics Communications, 184: 1848-1860. doi:10.1016/j.cpc.2013.03.008.

Barreiro A, Crespo AJC, Domínguez JM and Gómez-Gesteira M. 2013. Smoothed Particle Hydrodynamics for coastal engineering problems. Computers and Structures, 120(15): 96-106. doi:10.1016/j.compstruc.2013.02.010.

Domínguez JM, Crespo AJC and Gómez-Gesteira M. 2013. Optimization strategies for CPU and GPU implementations of a smoothed particle hydrodynamics method. Computer Physics Communications, 184(3): 617-627. doi:10.1016/j.cpc.2012.10.015.

Valdez-Balderas D, Domínguez JM, Rogers BD, Crespo AJC. 2013. Towards accelerating smoothed particle hydrodynamics simulations for free-surface flows on multi-GPU clusters. Journal of Parallel and Distributed Computing, 73(11): 1483-1493. doi:10.1016/j.jpdc.2012.07.010.

Skillen A, Lind SJ, Stansby PK, Rogers BD. 2013. Incompressible Smoothed Particle Hydrodynamics (SPH) with reduced temporal noise and generalised Fickian smoothing applied to body-water slam and efficient wave-body interaction. Computer Methods in Applied Mechanics and Engineering, 265: 163-173. doi:10.1016/j.cma.2013.05.017.

Omidvar P, Stansby PK, Rogers BD. 2013. SPH for 3D floating bodies using variable mass particle distribution. International Journal for Numerical Methods in Fluids, 72(4): 427-452. doi:10.1002/fld.3749.

2012 

Gómez-Gesteira M, Crespo AJC, Rogers BD, Dalrymple RA, Domínguez JM and Barreiro A. 2012. SPHysics - development of a free-surface fluid solver- Part 2: Efficiency and test cases. Computers & Geosciences, 48: 300-307doi:10.1016/j.cageo.2012.02.028.

Gómez-Gesteira M, Rogers BD, Crespo AJC, Dalrymple RA, Narayanaswamy M and Domínguez JM. 2012. SPHysics - development of a free-surface fluid solver- Part 1: Theory and Formulations. Computers & Geosciences, 48: 289-299. doi:10.1016/j.cageo.2012.02.029.

Omidvar P, Stansby PK, Rogers BD 2012. Wave body interaction in 2D using Smoothed Particle Hydrodynamics (SPH) with variable particle mass. International Journal for Numerical Methods in Fluids, 68(6): 686-705. doi:10.1002/fld.2528.

2011

Crespo AJC, Dominguez JM, Barreiro A, Gómez-Gesteira M and Rogers BD. 2011.  GPUs, a new tool of acceleration in CFD: Efficiency and reliability on Smoothed Particle Hydrodynamics methods. PLoS ONE, 6(6), e20685. doi:10.1371/journal.pone.0020685.

Domínguez JM, Crespo AJC, Gómez-Gesteira M, Marongiu JC. 2011. Neighbour lists in Smoothed Particle Hydrodynamics. International Journal For Numerical Methods in Fluids, 67(12): 2026-2042. doi:10.1002/fld.2481.

Vacondio R, Rogers BD, Stansby PK. 2011. Smoothed Particle Hydrodynamics: approximate zero-consistent 2-D boundary conditions and still shallow water tests. International Journal for Numerical Methods in Fluids, 69(1): 226-253. doi:10.1002/fld.2559.

2010

Gómez-Gesteira, M, Rogers BD, Dalrymple RA, Crespo AJC. 2010. State-of-the-art of classical SPH for free-surface flows. Journal of Hydraulic Research, 48: 6-27. doi:10.3826/jhr.2010.0012.

Rogers, BD, Dalrymple RA, Stansby PK. 2010. Simulation of caisson breakwater movement using 2-D SPH. Journal of Hydraulic Research, 48: 135-141, doi:10.1080/00221686.2010.9641254.

Narayanaswamy M, Crespo AJC, Gómez-Gesteira M, Dalrymple RA. 2010. SPHysics-FUNWAVE hybrid model for coastal wave propagation. Journal of Hydraulic Research, 48: 85-93.  doi:10.3826/jhr.2010.0007.

2008

Crespo AJC, Gómez-Gesteira M, Dalrymple RA. 2008. Modeling Dam Break Behavior over a Wet Bed by a SPH Technique. Journal of Waterway, Port, Coastal, and Ocean Engineering, 134(6): 313-320.

2007

Crespo AJC, Gómez-Gesteira M, Dalrymple RA. 2007. 3D SPH Simulation of large waves mitigation with a dike. Journal of Hydraulic Research, 45(5): 631-642.

Crespo AJC, Gómez-Gesteira M, Dalrymple RA. 2007. Boundary Conditions Generated by Dynamic Particles in SPH Methods. CMC: Computers, Materials, & Continua, 5(3): 173-184.

2006

Dalrymple RA, Rogers BD. 2006. Numerical Modeling of Water Waves with the SPH Method. Coastal Engineering, 53(2-3): 141-147, doi:10.1016/j.coastaleng.2005.10.004.

2005

Gómez-Gesteira M, Cerqueiro D, Crespo, Dalrymple RA. 2005. Green Water Overtopping Analyzed with an SPH Model. Ocean Engineering, 32(2): 223-238.

2004

Gómez-Gesteira M, Dalrymple RA. 2004. Using a 3D SPH Method for Wave Impact on a Tall Structure. J. Waterway, Port, Coastal, Ocean Engineering, 130(2): 63-69.