
Extending DualSPHysics to 
massive CPU clusters

Athanasios Mokos, José Dominguez, Benedict D. Rogers

School of Mechanical, Aeronautical and Civil Engineering 

University of Manchester, UK

3rd DualSPHysics User Workshop, 13-15 December 2016

Funded by the eCSE, eCSE07-16



Outline of Presentation
 Motivation for Research

 Message Passing Interface

 Using MPI with DualSPHysics
 Domain Decomposition

 Halo Exchange

 Asynchronous Communications

 Scalability
 Dynamic Load Balancing

 Zoltan Library
 Hlibert Space Filling Curve

 Using Zoltan with DualSPHysics
 Cell and particle mapping

 Load Balancing algorithm

 Future Work
 Halo and Particle Exchange



SPH for real problems

● Real-life applications are complex

3D flows

● SPH requires over 107 particles to

model them

● Multi-scale problems with long

runtimes

● Must do so as quickly as possible

SOLUTION: Use the inherent
parallelism of the GPU

Photo by University of Plymouth



GPUs are excellent for SPH:

 Massively Parallel, ideal for n-body simulations

 Low cost and energy consumption (Green Computing) 

Graphics Processing Units

Nvidia GTX1080

But…

 Still in their infancy (less developed tools and compilers)

 Significant speed drop when using double precision

 Require specialised hardware (cannot take advantage of 
existing HPC infrastructure)

 Require new investment in personnel



Current State of DualSPHysics

• Developing a CPU version of DualSPHysics that can tackle these problems 
is an attractive proposition

 Highly optimised code for a single 
node

 Multiple execution options

 Pre- and post-processing tools

• Current State of the CPU implementation:

 OpenMP implementation

SOLUTION: Use multiple 
processing nodes



 Develop a CPU code with similar capabilities to the existing GPU code that 
can be used in HPC installations

 Massive Parallelism required: Ability to scale for 100-1000s of cores (about 
100 cores needed for equivalent performance to GPU1

Motivation for Research

AIM: Develop a hybrid OpenMP-MPI program that can 

scale to 1000s of cores

 Implementation of the Message Passing Interface 
(MPI) standard

 Single node (OpenMP) -> Communication between different nodes (MPI)



 Standardised, independent and portable message parsing library 
specification

 Message Passing: Data is moved from one process to another 
through cooperative operations on each process. The recipient then 
selects the appropriate code to be executed.

Message Passing Interface

Distributed memory model



 Standardised, independent and portable message parsing library 
specification

 Message Passing: Data is moved from one process to another 
through cooperative operations on each process. The recipient then 
selects the appropriate code to be executed.

Message Passing Interface

OpenMP already developed so…

Hybrid memory model



Challenges of Integrating MPI

● Maintain DualSPHysics optimisation and structure
● Cell-linked neighbor list3

● Ease of use

● Reduce changes in SPH computation

● Limits options when creating particles and cells

● Need to introduce new features
● Focus on updating existing functions to work with multiple nodes

● Create new files to handle communication and data transfer



Integrating MPI in DualSPHysics

Single node files

● JCellDivCpuSingle

● JPartsLoad4

● JSphCpuSingle

MPI files

● CellDivCpuMPI

● ParticleLoadMPI

● SphCpuMPI

● Changes focused on:
● Loading data from GenCase

● Creating and updating the assignment of particles in cells

● Handling and integrating the new features



Integrating MPI in DualSPHysics

Single node files

● JCellDivCpuSingle

● JPartsLoad4

● JSphCpuSingle

MPI files

● CellDivCpuMPI

● ParticleLoadMPI

● SphCpuMPI

New files created to handle:

● Node communication

● Domain Decomposition

● Halo Exchange

● BufferMPI

● DataCommMPI

● HostMPI

● InfoMPI

● SliceMPI

● SphMPI

● SphHaloMPI



Domain Decomposition

 Allows the simulation to use more particles

 Reduces local and global memory footprint

 Reduces the load on each CPU core

Cell

 Divide the domain between nodes

 Unique particle and cell list

 1D decomposition through slices2



Domain Decomposition

 Allows the simulation to use more particles

 Reduces local and global memory footprint

 Reduces the load on each CPU core

Cell

 Divide the domain between nodes

 Unique particle and cell list

 1D decomposition through slices2



Halo Exchange

 Identify neighbouring particles in another process 
or particles moved from another process

 Transfer only the data of all potential neighbours

 Use a halo system for more efficiency3

 Only data from the neighbouring slice (distance 
2h) are transferred

 Edge particles form the halo of the subdomain

 Similar procedure on every subdomain border



(Dominguez et al. 2013)2

Asynchronous Communications

● Objective: Minimise waiting time for data 
transfer 

● Neighbour list of interior particles processed 
while sending data of displaced particles

● Compute forces on interior particles while 
receiving halo data

● Processes synchronise when calculating 
the time step



Results

● Execution for 8 processes

● Results identical to single-node 
DualSPHysics

● Results independent of the number 
of processes

● Portability: Code operates for both 
Windows and Linux in different 
processor architectures



Results

● Execution for 8 processes

● Results identical to single-node 
DualSPHysics

● Results independent of the number 
of processes

● Portability: Code operates for both 
Windows and Linux in different 
processor architectures



Results

● Execution for 8 processes

● Results identical to single-node 
DualSPHysics

● Results independent of the number 
of processes

● Portability: Code operates for both 
Windows and Linux in different 
processor architectures



Scalability

● Code can be further optimised

● Parallel Efficiency %100
1pT

T
E

p

p 

REMINDER: We need more than 107

particles for the target problems

● Scalability issues do not allow efficient 
computation with ~100 processes

● 1D decomposition not scalable

● No load balancing

● Possible release for small scale 
applications?



Dynamic Load Balancing

 Processes do not have the same 
workload (number of particles, inter-
particle forces)

Dynamic simulations – workload of 
each process changes constantly

Options:

1. Same number of particles

2. Same execution time

 Option 1 is simpler to enforce

 Option 2 has higher potential but 
difficult to enforce



Dynamic Load Balancing

 Processes do not have the same 
workload (number of particles, inter-
particle forces)

Dynamic simulations – workload of 
each process changes constantly

Options:

1. Same number of particles

2. Same execution time

 Option 1 is simpler to enforce

 Option 2 has higher potential but 
difficult to enforce



The Zoltan Library

 Use of the Zoltan data management library4

 Library for the development and optimization    
of parallel, unstructured and adaptive codes

 Scalable up to 106 cores4

 Includes a suite of spatial decomposition and 

dynamic load balancing algorithms and an 

unstructured communication package

Guo et al. (2013)5

● Geometric Decomposition Algorithm: 
Hilbert Space Filling Curve (HSFC)



 A continuous fractal space-filling curve 
(containing the entire 2D unit square)

 Maps 2D and 3D points to a 1D curve

 Maintains spatial locality

 Already used for SPH5

 Irregular subdomain shapes 
(increased complexity of data transfer)

Hilbert Space Filling Curve



Hilbert Space Filling Curve

Guo et al. (2015)7

 A continuous fractal space-filling curve 
(containing the entire 2D unit square)

 Maps 2D and 3D points to a 1D curve

 Maintains spatial locality

 Already used for SPH5

 Irregular subdomain shapes 
(increased complexity of data transfer)



 HSFC maps cells on a 1D curve into 
the interval [0,1]

 Divides the curve into N ‘bins’ where N 
is larger than the amount of processes

 Sums bin weights from starting point, 
cutting off whenever the desired 
weight is reached

 Bins containing a cutting off point are 
further refined until the desired 
balance is achieved

HSFC Algorithm



 HSFC maps cells on a 1D curve into 
the interval [0,1]

 Divides the curve into N ‘bins’ where N 
is larger than the amount of processes

 Sums bin weights from starting point, 
cutting off whenever the desired 
weight is reached

 Bins containing a cutting off point are 
further refined until the desired 
balance is achieved

HSFC Algorithm



Using Zoltan in DualSPHysics

● Domain Decomposition and Load Balancing 
through Zoltan

Devine et al. (2009)4

● Load Balancing through Cell Weights
– Based on particle number5 (Current)

– Based on execution time

● Main Partitioning Parameter: Cells
– Significantly smaller number than particles

– Allow for load balancing

– Position does not change

● Automatic migration through Zoltan_Migrate
– Low complexity of data transferred



 New arrays created:
 Global Cell ID

 Local Cell ID

 Cell Coordinates

 Cell Weights

Using Zoltan in DualSPHysics

 Each process only holds local data

 Initial domain split by 1D 
decomposition (Slices)

 Example: Domain divided in 64 
cells containing 285 particles

0 8 16 24 32 40 48 56

1 9 17 25 33 41 49 57

2 10 18 26 34 42 50 58

3 11 19 27 35 43 51 59

4 12 20 28 36 44 52 60

5 13 21 29 37 45 53 61

6 14 22 30 38 46 54 62
7 15 23 31 39 47 55 63



 New arrays created:
 Global Cell ID

 Local Cell ID

 Cell Coordinates

 Cell Weights

Using Zoltan in DualSPHysics

 Each process only holds local data

 Initial domain split by 1D 
decomposition (Slices)

 Example: Domain divided in 64 
cells containing 285 particles

0 8

1 9

2 10

3 11

4 12

5 13

6 14

7 15



 Cell weights5:

Using Zoltan in DualSPHysics

 Data is sent to Zoltan

 HSFC algorithm is applied

 Zoltan Output:
 Global Cell IDs of imported cells

 Global Cell IDs of exported cells

 Destination process

pt

pc

C
N

N
w 

 Cell data automatically migrated 
using AUTO_MIGRATE option



 GlobalCellID is updated:
 Exported cells removed

 Imported cells added

Using Zoltan in DualSPHysics

 Particles are also imported and 
exported

 Data reordered creating new cell-
linked neighbour list

 LocalCellID is updated

 Algorithm applied only when 
imbalance exceeds 20%



 Connection between cells and particles needed

 Existing DualSPhysics array: CellPart

 CellPart can be easily mapped on LocalCellID

 LocalCellID acts as intermediary between CellPart and GlobalCellID

 Not the most elegant solution

Particle Mapping

If Nc number of local cells 

CellPart

(2Nc+5)

LocalCellID

(Nc)

GlobalCellID

(Nc)



Particle Reordering

 Currently, particle data reordered 
using single node algorithm

 Better option: reorder along HSFC 
path5

 GlobalCellID is constant

6 10 14 16

0 3 7 11 15 17

1 4 8 12
2 5 9 13

 Same for LocalCellID – allows 
mapping to Cellpart



Particle Reordering

 Currently, particle data reordered 
using single node algorithm

 Better option: reorder along HSFC 
path5

 GlobalCellID is constant

 Same for LocalCellID – allows 
mapping to Cellpart



Particle Reordering

 Currently, particle data reordered 
using single node algorithm

 Better option: reorder along HSFC 
path5

 GlobalCellID is constant

 Same for LocalCellID – allows 
mapping to Cellpart

12 13 14 15

1 0 11 10 17 16

2 5 6 9
3 4 7 8



 Complete a working version of the DualSPHysics MPI code
 Halo Exchange

 Particle Exchange

 Assess the code capabilities and validate

 Optimisation

Future Work

 New I/O functions required – Transition to the Hierarchical Data Format (HDF5)

 Execution to large HPC clusters for 1000s of cores



 Halo exchange reworked using cells

 Neighbouring cells explicitly known 
through GlobalCellID

 Identify processes the particles are in 
and transfer data

 Packing and unpacking algorithms 
same as previous code

Halo Exchange



 Particles can move out of the cell

 New cell may be in a different process

 Use Cell coordinates to identify edges 
of the process’ domain

 Identify process and cell the particle 
moves into

 Use same packing/unpacking algorithm

 Process needs to be completed before 
reordering particle data

Particle Exchange



Potential

• Dambreak at 1.1s for 256 partitions5• Dambreak at 0s for 256 partitions5



1Crespo, A.J.C., J.M. Dominguez, B.D. Rogers, M. Gomez-Gesteira, S. Longshaw, R. Canelas, R. 
Vacondio, A. Barreiro, and O. Garcia-Feal, DualSPHysics: Open-source parallel CFD solver based 
on Smoothed Particle Hydrodynamics (SPH). Computer Physics Communications, 2015. 187(0): p. 
204-216.
2Valdez-Balderas, D., J.M. Dominguez, B.D. Rogers, and A.J.C. Crespo, Towards accelerating 
smoothed particle hydrodynamics simulations for free-surface flows on multi-GPU clusters. Journal 
of Parallel and Distributed Computing, 2013. 73(11): p. 1483-1493.
3Dominguez, J.M., A.J.C. Crespo, D. Valdez-Balderas, B.D. Rogers, and M. Gomez-Gesteira, New 
multi-GPU implementation for smoothed particle hydrodynamics on heterogeneous clusters.
Computer Physics Communications, 2013. 184(8): p. 1848-1860.
4Devine, K., E. Boman, R. Heaphy, B. Hendrickson, and C. Vaughan, Zoltan Data Management 
Service for Parallel Dynamic Applications. Computing in Science & Engineering, 2002. 4(2):p.90-97.
5Guo, X., B.D. Rogers,  S. Lind and P.K. Stansby, New Massively Parallel Scheme for 
Incompressible Smoothed Particle Hydrodynamics (ISPH) for Highly Nonlinear and Distorted Flow, 
in Computer Physics Communications, under publication.
6Guo, X., S. Lind, B.D. Rogers, P.K. Stansby, and M. Ashworth, Efficient massive parallelisation for 
incompressible Smoothed Particle Hydrodynamics with 10^8 particles, in 8th International 
SPHERIC Workshop. 2013: Trondheim, Norway.
7Guo, X., B.D. Rogers, S. Lind, P.K. Stansby, and M. Ashworth, Exploring an Efficient Parallel 
Implementation Model for 3-D Incompressible Smoothed Particle Hydrodynamics, in 10th 
International SPHERIC Workshop. 2013: Trondheim, Norway.

References



Thank you

Acknowledgements

• U-Man: Georgios Fourtakas, Peter Stansby, Steve Lind

• STFC: Xiaohu Guo, Stephen Longshaw

• U-Vigo: Alex Crespo, Moncho Gomez-Gesteira

• U-Parma: Renato Vacondio

Free open-source DualSPHysics code:

http://www.dual.sphysics.org


