
Optimisation and SPH Tricks

José Manuel Domínguez Alonso

jmdominguez@uvigo.es

EPHYSLAB, Universidade de Vigo, Spain

+

mailto:jmdominguez@uvigo.es

Outline

1. Introduction

1.1. Why is SPH too slow?

1.2. High Performance Computing (HPC)

1.3. DualSPHysics project

2. DualSPHysics implementation

2.1. Implementation in three steps

2.2. Neighbour list approaches

3. CPU acceleration

4. GPU acceleration

4.1. Parallelization problems in SPH

4.2. GPU optimisations

5. Multi -GPU acceleration

5.1. Dynamic load balancing

5.2. Latest optimisations in Multi-GPU

5.3. Large simulations

6. Future improvements

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

The SPH method is very expensive in terms of computing time.

300,000 particles

1.5 s (physical time)

Takes more than

15 hours

(execution time)

For example, a simulation of this dam break

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

1.1. Why is SPH too slow?

The SPH method is very expensive in terms of computing time.

300,000 particles

1.5 s (physical time)

Takes more than

15 hours

(execution time)

For example, a simulation of this dam break

because:

Å Each particle interacts

with more than 250

neighbours.

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

1.1. Why is SPH too slow?

The SPH method is very expensive in terms of computing time.

300,000 particles

1.5 s (physical time)

Takes more than

15 hours

(execution time)

For example, a simulation of this dam break

because:

Å Each particle interacts

with more than 250

neighbours.

Å æt=10-5-10-4 so more

than 16,000 steps are

needed to simulate 1.5

s of physical time.

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

1.1. Why is SPH too slow?

Drawbacks of SPH:

Å SPH presents a high computational cost that increases when increasing the

number of particles.

Å The simulation of real problems requires a high resolution which implies

simulating millions of particles.

The time required to simulate a few seconds is too large. One second of

physical time can take several days of calculation.

IT IS NECESSARY TO USE HPC TECHNIQUES TO REDUCE THESE

COMPUTATION TIMES .

1.1. Why is SPH too slow?

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

HPC includes multiple techniques of parallel computing and distributed

computing that allow you to execute several operations simultaneously.

The main techniques used to accelerate SPH are:

Å OpenMP (Open Multi -Processing)

1.2. High Performance Computing (HPC)

ï Model of parallel programming for systems of

shared memory.

ï Portable and flexible programming interface

using directives.

ï Its implementation does not involve major

changes in the code.

ï The improvement is limited by the number of

cores.

OPENMP IS THE BEST OPTION TO OPTIMIZE THE PERFORMANCE

OF THE MULTIPLE CORES OF THE CURRENT CPUS.

Multi -core processor

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

HPC includes multiple techniques of parallel computing and distributed

computing that allow you to execute several operations simultaneously.

The main techniques used to accelerate SPH are:

Å MPI (Message Passing Interface)

ï Message-passing library specification for

systems of distributed memory: parallel

computers and clusters.

ï Several processes are communicated by calling

routines to send and receive messages.

ï The use of MPI is typically combined with

OpenMP in clusters by using a hybrid

communication model.

ï Very expensive for a small research group.

MPI IS THE BEST OPTION TO COMBINE THE RESOURCES OF

MULTIPLE MACHINES CONNECTED VIA NETWORK .

MPI cluster

1.2. High Performance Computing (HPC)

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

HPC includes multiple techniques of parallel computing and distributed

computing that allow you to execute several operations simultaneously.

The main techniques used to accelerate SPH are:

Å GPGPU (General-Purpose Computing on Graphics Processing Units)

ï It involves the study and use of parallel

computing ability of a GPU to perform general

purpose programs.

ï New general purpose programming languages

and APIs (such as Brook and CUDA) provide

an easier access to the computing power of

GPUs.

ï New implementation of the algorithms used in

CPU is necessary for an efficient use in GPU.

GPU

1.2. High Performance Computing (HPC)

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

Advantages: GPUs provide a high calculation power with very low cost and without

expensive infrastructures.

Drawbacks: An efficient and full use of the capabilities of the GPUs is not

straightforward.

Graphics Processing Units (GPUs)

Åpowerful parallel processors

Ådesigned for graphics rendering

Åtheir computing power has increased

much faster than CPUs.

1.2. High Performance Computing (HPC)

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

Outline

1. Introduction

1.1. Why is SPH too slow?

1.2. High Performance Computing (HPC)

1.3. DualSPHysics project

2. DualSPHysics implementation

2.1. Implementation in three steps

2.2. Neighbour list approaches

3. CPU acceleration

4. GPU acceleration

4.1. Parallelization problems in SPH

4.2. GPU optimisations

5. Multi -GPU acceleration

5.1. Dynamic load balancing

5.2. Latest optimisations in Multi-GPU

5.3. Large simulations

6. Future improvements

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

Why two implementations?

This code can be used on machines with GPU and without GPU.

It allows us to make a fair and realistic comparison between CPU and GPU.

Some algorithms are complex and it is easy to make errors difficult to detect. So they are

implemented twice and we can compare results.

It is easier to understand the code in CUDA when you can see the same code in C++.

Drawback: It is necessary to implement and to maintain two different codes.

First version in late 2009.

It includes two implementations:

 - CPU: C++ and OpenMP.

 - GPU: CUDA.

Both options optimized for the best

performance of each architecture.

2. DualSPHysics implementation

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

For the implementation of SPH, the code is organised in 3 main steps that are repeated

each time step till the end of the simulation.

Initial Data

Neighbour List
(NL)

Particle
Interaction (PI)

System
Update (SU)

Save Data
(occasionally)

Neighbour list (NL) :

Particles are grouped in cells and reordered to

optimise the next step.

Particle interactions (PI):

Forces between particles are computed, solving

momentum and continuity equations.

This step takes more than 95% of execution

time.

System update (SU):

Starting from the values of computed forces, the

magnitudes of the particles are updated for the

next instant of the simulation.

2.1. Implementation in three steps

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

Particle Interaction (PI) consumes more than

95% of the execution time. However, its

implementation and performance depends

greatly on the Neighbour List (NL).

NL step creates the neighbour list to

optimise the search for neighbours during

particle interaction.

2.2. Neighbour list approaches

Initial Data

Neighbour List
(NL)

Particle
Interaction (PI)

System
Update (SU)

Save Data
(occasionally)

Two approaches were studied:

ÅCell-linked list (CLL)

ÅVerlet list (VL)

Å Classical Verlet List (VL C)

Å Improved Verlet List (VL X)

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

Cell-linked List (CLL)

Å The computational domain is divided in cells of side 2h (cut-off limit) .

Å Particles are stored according to the cell they belong to.

Å So each particle only looks for its potential neighbours in the adjacent cells.

2.2. Neighbour list approaches

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

Cell-linked List (CLL)

Å The computational domain is divided in cells of side 2h (cut-off limit) .

Å Particles are stored according to the cell they belong to.

Å So each particle only looks for its potential neighbours in the adjacent cells.

2h

In this example:

2h

2.2. Neighbour list approaches

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

Cell-linked List (CLL)

Å The computational domain is divided in cells of side 2h (cut-off limit) .

Å Particles are stored according to the cell they belong to.

Å So each particle only looks for its potential neighbours in the adjacent cells.

2h

In this example:

141 Potential neighbours

(gray particles)

2h

2.2. Neighbour list approaches

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

Cell-linked List (CLL)

Å The computational domain is divided in cells of side 2h (cut-off limit) .

Å Particles are stored according to the cell they belong to.

Å So each particle only looks for its potential neighbours in the adjacent cells.

In this example:

141 Potential neighbours

(gray particles)

47 real neighbours

(dark gray particles) 2h

2h

2h

2.2. Neighbour list approaches

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

Verlet List

Å The computational domain is divided in cells of side 2h (cut-off limit).

Å Particles are stored according to the cell they belong to.

Å So each particle only looks for its potential neighbours in the adjacent cells.

Å Array of real neighbours is created for each particle.

a1

a2

a3

a4

b1

b2

b3

c1

c2

c3

c4

d1

d2

...

Array with real
neighbours of...

particle a

particle b

particle c

particle d

2.2. Neighbour list approaches

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

Improved Verlet List (VL X)

Åæh is calculated in the same way as in VLC but the number of steps the list is kept

(X instead of C) is only tentative.

Å The constant v=1 (instead of 1.2) is used because no extra distance is necessary.

Å The same list can be used for several time steps.

�¨�K=v(2·Vmax·C·dt)

Vmax: maximum velocity

C: time steps that list is fixed

dt: physical time for one time step

v: constant to remove inaccuracies

in calculations

2.2. Neighbour list approaches

DualSPHysics Users Workshop 2015, 8-9 September 2015, Manchester (United Kingdom)

