Coupling DualSPHysics and Project Chrono: towards large scale HPC multiphysics simulations

Ricardo B. Canelas¹, Moisés Brito¹, Jose M. Domínguez², Alejandro J.C. Crespo²

¹CERIS, Instituto Superior Técnico, Lisbon, Portugal
²Environmental Physics Laboratory (EPHYSLAB), Universidade de Vigo, Ourense, Spain

General motivation

Mechanical contacts and constrains are ubiquitous in natural and industrial processes, ranging from simple linear mechanisms to intricate highly non-linear problems.

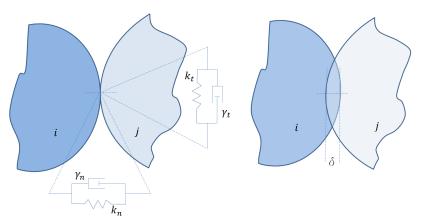
Unfinished business from our solid-solid work:

- Not unconditionally stable solids description (far from it);
- Difficult to model intricate mechanisms;
- Complex friction models hurt performance unacceptably for HPC code

Rigid bodies in DualSPHysics

Conserving the **relative positions** of a group of particles, these can be made to describe a solid body.

$$M_{I}\frac{d\mathbf{V}_{I}}{dt}=\sum_{k\in I}m_{k}\frac{d\mathbf{v}_{k}}{dt}$$


$$I_I \frac{d\Omega_I}{dt} = \sum_{k \in I} m_k (\mathbf{r}_k - \mathbf{R}_I) \times \frac{d\mathbf{v}_k}{dt}$$

$$\mathbf{v}_k = \mathbf{V}_I + \mathbf{\Omega}_I \times (\mathbf{r}_k - \mathbf{R}_I)$$

The **inertia tensor** is computed for the fly for the system of material points, making no assumptions on shape, i.e. it **is exact for the discretized system**.

DEM - Soft body model

Approximate contacts with a **spring-dashpot model**:

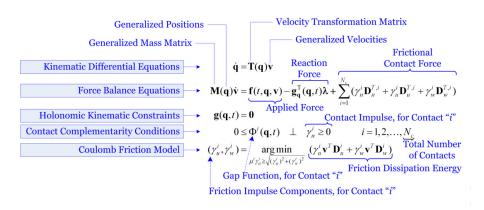
Spring displacement is given by body overlap, δ , hence 'soft' body. This translates into a **penalty method**, solved with the same explicit schemes as the SPH equations.

DEM - Soft body model

Very useful, but laden with issues for generic contact modeling:

- Very stiff contacts induce very narrow stability regions;
- Full, long term frictional contacts are prohibitively expensive to model;
- Bodies made of a collection of spheres induce geometrical effects locking, aliasing effects on relative motions...

An explicit penalty method is just too limited for our goals with DualSPHysics!


DVI - Hard body model

Approximate everything with a Differential Variational Inequality:

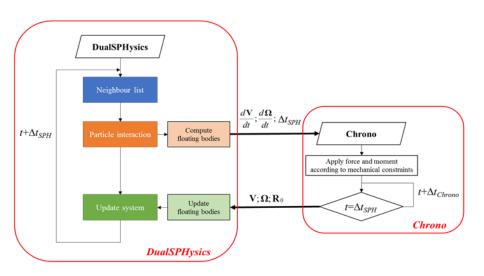
$$\begin{split} \dot{\mathbf{q}} &= \mathbf{T}(\mathbf{q})\mathbf{v} \\ \mathbf{M}(\mathbf{q})\dot{\mathbf{v}} &= \mathbf{f}(t, \mathbf{q}, \mathbf{v}) - \mathbf{g}_{\mathbf{q}}^{\mathrm{T}}(\mathbf{q}, t)\lambda + \sum_{i=1}^{N_c} (\gamma_n^i \mathbf{D}_n^{T,j} + \gamma_n^i \mathbf{D}_n^{T,j} + \gamma_w^i \mathbf{D}_w^{T,j}) \\ \mathbf{g}(\mathbf{q}, t) &= \mathbf{0} \\ 0 &\leq \Phi^i(\mathbf{q}, t) \quad \bot \quad \gamma_n^i \geq 0 \qquad i = 1, 2, \dots, N_c \\ (\gamma_n^i, \gamma_w^i) &= \underset{\mu^i \gamma_n^i \geq \sqrt{(\gamma_n^i)^2 + (\gamma_w^i)^2}}{\arg \min} \quad (\gamma_n^i \mathbf{v}^T \mathbf{D}_n^i + \gamma_w^i \mathbf{v}^T \mathbf{D}_w^i) \end{split}$$

DVI - Hard body model

Approximate everything with a Differential Variational Inequality:

Chrono Project

Project Chrono is a physics-based modeling and simulation infrastructure based on a platform-independent, open-source design - much like DualSPHsysics


- Wide set of joints (spherical, revolute joint, prismatic, universal joint, glyph, with limits, etc.);
- Unilateral constraints;
- Exact Coloumb friction model, for precise stick-slip of bodies;
- Springs and dampers, even with non-linear features;
- Recent support for linear and nonlinear Finite Element Analysis -Euler-Bernoulli beams, bars, shells, cables.

Implementation

- Problem is cast in CCP form and solved with a novel fixed point iteration method;
- GPU implementation allows for million+ bodies in Chrono-side to be simulated orders of magnitude faster than DEM;

- Geometries are represented by meshes;
- Mesh is overlaid over the particle distribution - done automatically by GenCase;
- For simple non-contact problems mesh is not required;

Project Chrono and DualSPHysics

Current advances and the future

- Generalized restrictions (revolute and spherical joints);
- Uses the same material parameters and structure as the DEM formulation:
- Simple pre-processing visual aids;
- Initials conditions are synchronous and compatible across both scenes

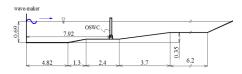
- Maximum number of bodies superior to current 2048;
- Periodic conditions;
- Run-time contact and joint force reports;
- Deformable bodies support in DualSPHysics.

Frictional interactions

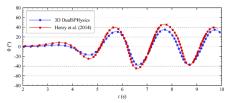
Plane at 20°, critical $\mu \approx$ 0.36.

Restrictions and joints

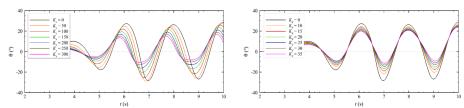
Ever heard of a chaotic pendulum?

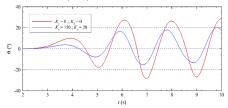

Formulation is robust.

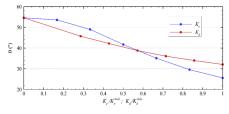
Gluing everything, kind of a water mill


No imposed motions, periodic conditions on the fluid

Officially the worst mill designer ever, but the model makes up for it.


Application to Wave Energy Converters - Flaps


Experimental set up at the Marine Research Group's hydraulics laboratory at Queen's University Belfast.



WECs - Flaps

Introducing different values of the elastic coefficient (K_e) and the damping coefficient (K_d), we can go beyond the current experiments.

WECs graveyard - Pelamis

6 linked bodies with free revolute joints.

WECs graveyard? - Wavestar

Revolute and spherical joints on the articulated arms and buoys.

Conclusions and future work

- A fully coupled and robust multi-physics oriented DualSPHysics version was presented;
- Simple set-up of large numbers of mechanical constraints;
- Complex mechanisms such as most WECs, control structures and multi-body floating structures can now be efficiently modeled and pre-designed;

- Implement deformable particle cluster for FEM use;
- Test GPU concurrent runs for large scale granular dynamics studies;