

Post-processing and advanced visualisation

Dr Alejandro CRESPO Universidade de Vigo SPAIN

2nd DualSPHysics User Workshop, 6-7 December 2016

Outline of Presentation

Post-processing tools

- PartVTK, PartVTKOut
- MeasureTool
- BoundaryVTK, IsoSurface
- ComputeForces, FloatingInfo
- TracerVTK
- MeasureBoxes
- VisualSPHysics

PartVTK

PartVTK is used to convert the binary output from DualSPHysics into different formats (mainly VTK, but also CSV, ASCII...) with the selected magnitudes.

HOW TO NUMERICALLY COMPUTE PRESSURE

- 1) For a given location
- 2) We compute numerical PRESSURE

using PRESSURE values of neighbouring fluid particles

$$\boldsymbol{P}_{a} = \frac{\sum_{b} \boldsymbol{P}_{b} \boldsymbol{W}_{ab}}{\sum_{b} \boldsymbol{W}_{ab}}$$

MeasureTool

Compute Pressure in CASESLOSHING

Time: 0 s

MeasureTool

Compute Pressure in CASESLOSHING

MeasureTool

COMPUTING PRESSURE IS A BAD IDEA

DBC=> GAP BOUNDARY-FLUID (1.5*h)

DBC=> UNPHYSICAL VALUES OF PRESSURE IN THE BOUNDARIES

MeasureTool

CASESLOSHING

CASEDAMBREAK

MeasureTool

Compute free-surface elevation in CASEWAVEGENERATION

HOW TO NUMERICALLY COMPUTE FREE-SURFACE ELEVATION

- 1) For a given (X,Y) position
- 2) We compute numerical MASS at different Z positions using MASS values of neighbouring fluid particles

$$\boldsymbol{m}_a = \sum_b \boldsymbol{m}_b W_{ab}$$

We will choose as wave elevation:
 the Z value for which *m*=0.5**m*_{reference}

MeasureTool

Compute free-surface elevation in CASEWAVEGENERATION

BoundaryVTK

CASEFLOATING

BoundaryVTK generates files that represent the movement of the different boundaries particles (moving and floating objects).

IsoSurface

This tool generates the isosurface of the fluid to improve the visualization.

When the number of particles grow to large numbers the single particle visualization is no longer a choice.

IsoSurface

This tool generates the isosurface of the fluid to improve the visualization.

COMPUTING PRESSURE IS A BAD IDEA COMPUTING FORCE IS BRILLIANT

ComputeForces

Post-processing

HOW TO NUMERICALLY COMPUTE FORCES

- 1) For a range of boundary particles
- 2) We compute numerical ACCELERATION of those boundary particles solving the particle interactions with fluid neighbouring particles

$$\frac{d\mathbf{v}_a}{dt} = -\sum_b m_b \left(\frac{P_b}{\rho_b^2} + \frac{P_a}{\rho_a^2} + \Pi_{ab}\right) \nabla_a W_{ab} + \mathbf{g}$$

3) We do the summation of ACCELERATION values of those boundary particles

ComputeForces

EXERTED ON A FIXED VERTICAL WALL

ComputeForces

EXPERIENCED BY FLOATINGS

Time: 0.00 s

Density=500 kg/m^3

Density=750 kg/m^3

ComputeForces EXPERIENCED BY FLOATINGS

FloatingInfo

3D motions: heave, surge and sway3D rotations: roll, pitch and yaw

CASEFLOATINGWAVESVAL

2D motions: **heave, surge** 2D rotations: **roll**

Time: 0 s

FloatingInfo

CASEFLOATINGWAVESVAL

2D motions: **heave, surge** 2D rotations: **roll**

TracerVTK

This tool plots the trajectory of a set of selected particles to show clearly how these particles have moved in very complex geometries.

TracerVTK

This tool plots the trajectory of a set of selected particles to show clearly how these particles have moved in very complex geometries.

MeasureBoxes

This program calculates the volume and velocity of fluid in any volume of the simulation. The volume can be defined by triangles.

It calculates the amount of fluid that enters or leaves any of the defined volumes.

MeasureBoxes

This program calculates the volume and velocity of fluid in any volume of the simulation. The volume can be defined by triangles.

It calculates the amount of fluid that enters or leaves any of the defined volumes.

MeasureBoxes

This program calculates the volume and velocity of fluid in any volume of the simulation. The volume can be defined by triangles.

It calculates the amount of fluid that enters or leaves any of the defined volumes.

OVERTOPPING!!!

MeasureBoxes

Comparison accumulative overtopping volume [kg/m]

Outline of Presentation

Post-processing tools

- PartVTK, PartVTKOut
- MeasureTool
- BoundaryVTK, IsoSurface
- ComputeForces, FloatingInfo
- TracerVTK
- MeasureBoxes

• VisualSPHysics: new !!!

Visualization is an important tool to communicate scientific results.
Scientific SPH animations usually present poor visual realism.

- Scientists are -usually- not 3D artists.
- ✤ Suitable tools to easily produce high quality animations are needed.

BLENDER

- Popular 3D graphics software used for creating animated films, visual effects, art, 3D printed models, interactive 3D applications and video games.
- Includes a path-tracing render engine (Cycles) that physically simulate light to offer realistic results.

VISUALIZATION FEATURES (PARTICLES)

VISUALIZATION FEATURES (ISOSURFACE)

VISUALIZATION FEATURES (BLENDER IMPORT)

VISUALIZATION FEATURES (TEXTURING)

VISUALIZATION FEATURES (IMPROVED MATERIALS AND LIGHTING)

VISUALIZATION FEATURES (FOAM)

VISUALIZATION FEATURES (MOTION BLUR)

Boat simulation

Waves interacting with a breakwater

Animation of a ship

Office simulation

Tyre simulation

Simulation of a natural creek

Urban flood

Urban flood

Realistic visualization for DualSPHysics

Orlando García-Feal

Realistic visualization for DualSPHysics

Orlando García-Feal

Modular: Distributed as a Blender add-on. Simple to install. **Integrated:** Use all the Blender tools for your simulations. **Customizable:** Easy customizable with Python.

Let us try VisualSPHysics

STEPS in VisualSPHysics

- Install Blender (<u>https://www.blender.org/</u>)
- Download VisualSPHysics (beta-version for Windows)
- Open Blender and go to File -> User Preferences -> Add-ons Click on "Install from file..."
 Select the downloaded ZIP file of VisualSPHysics Enable the checkbox with "Object: VisualSPHysics Blender Addon" Click on "Save User Settings" button and close the preferences window.
- Engine to use for rendering: Cycles Render
- Remove initial box: right click & R (or SUPR)
- IMPORT Stl:
 - We select "scaled_cup.stl"
- FLUID: SHIFT $+ A \rightarrow Mesh \rightarrow DualSPHysics Object$
 - Object Type: Fluid Object
 - o Activate "Smooth Shading"
 - o Activate "Validate mesh"
 - Select "Surface_0000.vtk"
- BACKGROUND: SHIFT + A \rightarrow Mesh \rightarrow Plane
 - "R" (rotate), "X" (rotation in X axis), "90" (90 degrees)
 - Move the plan backwards (green arrow)
 - "S" (scale), "10" (x10)
- MOVE LIGHT: Outliner: Scene: Lamp
 - Move light close to the cup

- DEFINE MATERIALS
 - \circ Split windows (\\\ and move to display new window)
 - \circ Editor Type (cube icon) \rightarrow Node editor
 - Outliner: Scene: Scaled Cup
 - Tools (left), Shading: Smooth
 - Node editor: New
 - Remove "Diffuse BSDF"
 - SHIFT $+ A \rightarrow$ Shader \rightarrow Glass BSDF
 - Connect BSDF to Surface
 - Outliner: Scene: Surface_FLUID
 - Node editor: New
 - Remove "Diffuse BSDF"
 - SHIFT $+ A \rightarrow$ Shader \rightarrow Glass BSDF
 - Connect BSDF to Surface
 - IOR: 1.333
 - Color: red
 - o Outliner: Scene: Lamp
 - Node editor: Use Nodes
 - Strength: 50
- Viewport Shading (circle icon) \rightarrow Rendered
- CAMERA
 - \circ Click "+" and drag to the left for new options
 - o Activate "Lock Camera to View"
 - $\circ \quad \text{View} \rightarrow \text{ Cameras} \rightarrow \text{Activate camera}$
 - Move to choose frame
- RENDER

Visualisation in Paraview loading VTK files

Visualisation in Blender

Thank you

Acknowledgements

- DualSPHysics team: all developers and contributors
- Orlando García Feal

Website

Free open-source **DualSPHysics** code: http://www.dual.sphysics.org

