
Converting DualSPHysics to
solve strictly Incompressible SPH

Alex Chow, Benedict D. Rogers, Peter K. Stansby, Steven Lind

School of Mechanical, Aeronautical and Civil Engineering
University of Manchester

UK

PhD research funded by the EPSRC and UoM Research Impact Fund

2nd DualSPHysics User Workshop, 6-7 December 2016

Outline of Presentation

Motivations for research / PhD project aims
WCSPH vs ISPH
Why DualSPHysics?
 ISPH on the GPU in DualSPHysics implementation

challenges
Methodology

 Which DualSPHysics files to change?
 ISPH projection step
 Inserting new functions (for solving the Pressure Poisson Equation)
 Implementing open-source linear solver libraries
 Boundary conditions

Research challenges
Results and Simulations
Conclusions & Future Developments

Motivations and project aims

Project aims:
• To create a computational model for

solving incompressible free-surface flows
• For modelling breaking wave-structure

impacts

Wind Turbines

Wave Energy Devices

Tidal Stream Turbines

Renewable energy is required!
• Recent trends show an increase in offshore

development for renewable energies (EWEA,
2016)

• Offshore environments are harsh and difficult
to design efficiently and cost effectively

The European Wind Energy Association (EWEA), Offshore
statistics. (2016) doi: http://www.ewea.org/statistics/offshore/

Motivations and project aims

Wave impact on a circular cylinder
(Skillen et al., 2013)

• Incompressible SPH (ISPH) is ideal
to model free-surface flows with a
smooth, noise-free pressure field.

A. Skillen, S. Lind, P. K. Stansby, and B. D. Rogers, Incompressible smoothed particle hydrodynamics (SPH) with reduced temporal noise and
generalised Fickian smoothing applied to body-water slam and efficient wave-body interaction. Comput. Methods Appl. M. (2013) 265:163-173.

• However, ISPH has slow
computational times.
• Due to the need for the solution

of a pressure Poisson equation
matrix, Ax=B

• Use of Graphics Processing Unit
(GPU) to speed things up.

• Hasn’t been investigated properly before!

Pressure Poisson equation matrix

WCSPH vs ISPH
• Traditional (Weakly-Compressible) SPH uses an artificial

equation of state to link density and pressure, allowing
density to vary by 1%.

• ISPH enforces incompressibility and solves pressure
through a pressure Poisson equation (PPE) in the form of a
sparse matrix.

The ISPH pressure Poisson equation
is solved using a system matrix in the

form Ax=B

The WCSPH artificial equation of
state

• The ISPH PPE is the most computationally expensive part
of the algorithm, in terms of both memory and time.

ISPH Pressure Poisson Equation

For a 1 million particle simulation, the PPE matrix has
(when h/dx=1.3) :
• Approximately 20 million non-zero elements in 2D
• Approximately 100 million non-zero elements in 3D

 To be solved every timestep

For this project, the application of a
breaking wave–structure impacts will
require several million particles in a

simulation

Why use DualSPHysics?

• DualSPHysics is a WCSPH code BUT there
are still common functions and variables
between ISPH and WCSPH that can be
reused: neighbourlist and particle-
reordering, kernel calculations etc.

• Already highly optimised.
• Implementing in CPU then transferring to GPU is easier than

straight to GPU.
• DualSPHysics has a high range of functionality: floating

objects, wavemaker, DEM coupling, multi-phase etc. Not the
biggest concern during implementation but relatively easy to
include in the future.

ISPH on the GPU in DualSPHysics
implementation challenges

ISPH on the GPU:
• Memory expensive method for memory limited hardware.
• Higher resolutions = Higher matrix condition numbers
 = Longer PPE solve times
• Solving Poisson equations for particle methods on GPUs is a

relatively new area for research

Implementation into DualSPHysics:
• Large piece of code - difficult to fully understand the inner

workings
• Challenges in identifying variables to keep/modify/extract
• Maintaining consistency in the code (parameter values,

precision etc.), especially between CPU and GPU.
• Challenges in adhering to existing DualSPHysics code when

adding new code.

Methodology – Files to change

CPU GPU

Arrangement of
computation

JSphCpuSingle.cpp
JSphCpuSingle.h

JSphGpuSingle.cpp
JSphGpuSingle.h

Executing computation JSphCpu.cpp
JSphCpu.h

JSphGpu.ker.cu
JSphGpu_ker.h

Adding new variables JSphCpu.h JSphGpu.h

Adding new memory JSphCpu.cpp JSphGpu.cpp

Adding new parameters JSph.cpp
JSph.h

Types.h

JSph.cpp
JSph.h

Types.h

Initial advection of particles

Find intermediate velocity from
viscous forces

Find pressure from the pressure
Poisson equation (PPE)

Correct the velocity with
pressure and external forces

Correct the position with the
new velocity

Shift particles to improve
distribution

Methodology – Implementing the ISPH
projection step

Methodology – Implementing the ISPH
projection step

DualSPHysics Symplectic step

Predictor

Corrector

Interaction_Forces()

RunShifting()

ComputeSymplecticPre() (Particle update)

Interaction_Forces()

RunShifting()

ComputeSymplecticCorr() (Particle update)

Methodology – Implementing the ISPH
projection step

Predictor

Corrector

Interaction_Forces

RunShifting()

ComputeSymplecticPre() (Particle update)

Interaction_Forces

RunShifting()

ComputeSymplecticCorr() (Particle update)

Init_Advection()

SolvePPE()

RunShifting()

(ForcesPre)

(ForcesCorr)

Methodology – Inserting new computation
functions for the PPE setup

• Use existing code as a template and insert necessary
equations within

For Example:
CPU – Begin loop through particles

GPU – Begin loop through particles

Other code that can be reused:
• Calling the neighbour list for each particle
• Calculating the particle interactions for each

Methodology – Implementing a sparse
linear solver library for solving the PPE

• Currently using an open-source sparse matrix solver
library for the CPU and GPU to setup a preconditioner for
the matrix and solve the PPE system.

• Using an appropriate open-source library to solve the
matrix is good:
• Highly optimised.
• Saves coding time.
• Provides different options for preconditioners and

linear solvers.

Methodology – Implementing a sparse
linear solver library for solving the PPE

K. Rupp, J. Weinbub, and F. Rudolf. Automatic performance Optimization in ViennaCL for GPUs. In POOSC ‘10: Proceedings of
the 9th Workshop on parallel/High-Performance Object-Oriented Scientific Computing, pages 1-6, New York, NY, USA, 2010.
ACM.

• This project is currently using the ViennaCL Library (Rupp, 2010)
• OpenMP and CUDA availablility

• To include in DualSPHysics, insert the library file path into the
properties:

• CPU: C/C++ ->Additional Include Directories
• GPU: JSphGpu_ker.cu
 ->Properties->Custom Build Tool->Command Line

• Insert necessary “#include” library files into where needed,
JSphCpu.cpp / JSphGpu_ker.cu etc.

• IF using for CPU and GPU, encase “#include” files with
 “#ifndef _WITHGPU” “#endif” to avoid CPU/GPU conflicts

Methodology – Solving the PPE

• The ISPH PPE is a non-symmetric sparse matrix.

• Common solvers in ISPH
literature used are GMRES
and BiCGSTAB.

• High Resolutions = large
condition numbers = Long solve
times

• The matrix represents a system in the
form, Ax=B.

Reducing the solution time: Preconditioning
• Preconditioning lowers the condition number of system so it is

faster to solve. For a preconditioner, applied to matrix A :
• Ax=b -> PAPTPx=b

• Preconditioning the matrix system is necessary for convergence

of a solution at high resolutions.

• In ISPH, the Jacobi preconditioner is typically used.

• Jacobi preconditioning is simple and memory effective.

But…

Methodology – PPE preconditioning

Methodology – PPE preconditioning

Solution:
• The Algebraic Multigrid (AMG) preconditioner scales

much better at higher resolutions and provides a very
quick solution time.

X. Guo, S. J. Lind, B. D. Rogers, P. K. Stansby, and M. Ashworth, Efficient Massive Parallelisation for Incompressible Smoothed Particle
Hydrodynamics with 108 Particles, Proceedings of the 8th international SPHERIC workshop (2013)

• Guo et al. (2013) has shown the Jacobi does not scale

well for high resolutions and may not even converge to
a solution.

• Instead he uses an Algebraic Multigrid preconditioner.

0

1

2

3

4

5

6

7

8

9

0 200,000 400,000 600,000 800,000 1,000,000 1,200,000

So
lv

e
Ti

m
e

(s
)

Number of Particles

GPU Still Water Preconditioner Total Solve Times

Jacobi

AMG

Does not even fully
converge to correct
solution!

Methodology – PPE preconditioning

Jacobi: 270,891 particles Jacobi: 1,577,091 particles

AMG: 1,577,091 particles

Methodology – Boundary conditions

• Taking advantage of the existing fixed dummy particle
generation in GenCase and DualSPHysics.

• Dummy particles are:

• Simple for parallel implementation
• Can deal with complex geometries

• However, still need to be modified for the ISPH to include

Neumann boundary conditions for the PPE matrix.

Methodology – Boundary conditions
Fluid Domain

Physical boundary particles
• Excluded from boundary velocity interpolation

Solid boundary particles
• Act as normal fixed particles

Neumann boundary particles
• Each Neumann particle pressure = closest

solid boundary particle pressure + dp/dn
• Ensures exact “mirroring” across Neumann

boundary line

Research Challenges
• Getting the ISPH formulation right! No ISPH literature using a

combination of:
• Wendland Kernel
• Dummy boundary particles
• Kinematic viscosity as low as 10-6m2/s

• Implementing linear solver libraries – some more demanding
than others, mixed level of documentation

• Invested 6 months into finding out why the parallel MIS2-
AMG preconditioner for the GPU failed to consistently work
with ISPH, which has now been corrected.

• CPU code to GPU code not always straightforward – some
differences in implementation

• Making sure CPU and GPU code give the same/similar results –
mixed precision issues (maintaining consistency)

Researching ISPH on the GPU has opened up many other
new and exciting possible avenues of research:

• The on going development of ISPH in general
• ISPH for higher resolutions and the challenges

associated with it
• The solution of the ISPH PPE at high resolutions:

• In particular, on the GPU
• Preconditioning Poisson equation matrices for

particle methods.
• In particular, on the GPU

Research Challenges

Despite the on going challenges, the rewards are high

Results
CPU
Intel i-7 4790 processor
Clockspeed: 3.6 GHz
Cores: 4
Threads: 8
OpenMP enabled

GPU
Nvidia GeForce GTX 980
Clockspeed: 1.126 GHz
CUDA Cores: 2048

• Wendland kernel: h=1.8dp

ViennaCL Library:
• Linear solver: BiCGStab, tolerance = 10-5

SPHERIC Benchmark Test Case 6 Moving Box, Re=150

Dambreak

Conclusions and future work
Project aim: to develop a solver for incompressible free-surface
flows capable of modelling breaking wave-structure impacts
• To achieve the project aim, a novel method of implementing

ISPH on the GPU is being used, DualSPHysics is the vehicle used
to create the model.

• The main idea for converting DualSPHysics is to use as much as

possible of what is already available.
• This is also applies for the use of an open-source linear

solver library for the PPE.

• Current work already shows a significant improvement in speed
and resolution capability from current ISPH literature.

• Lots of new research can be made with an accelerated ISPH.

Future work:

• Fix bugs
• Currently on about the “10th last bug”…

• The model needs to be extended to 3D.

• More rigorous analysis and accuracy testing needs to be done

to fully validate the model.

Conclusions and future work

Thank you

Acknowledgements
• All of the DualSPHysics team

• In particular: Dr Georgios Fourtakas, Dr Athansios Mokos, Dr
Jose Dominguez, and Dr Stephen Longshaw

• The developer of the ViennaCL library Karli Rupp

Any questions?

Methodology – Inserting new computation
functions for the PPE setup

CPU – Call p1 neighbours

CPU – Call p2 neighbours

Exclude ‘cellinitial’ for
boundary neighbours

Exclude ‘cellinitial’ for
boundary neighbours

//Insert __DEVICE__ function for particle interaction equation here

Methodology – Inserting new computation
functions (for the PPE setup)

CPU – p1 interact with p2

//Insert equations here

GPU – p1 interact with p2

//Insert equations here

//Call device function for particle interaction here {

Algebraic Multigrid (AMG)

A quick Algebraic Multigrid (AMG) overview:
• The preconditioner breaks the matrix down into different

“levels” of fineness, the original matrix is the “finest level”

The AMG creates different levels of a
matrix (Sumant et al., 2009)

• The different levels will reduce
errors of high and low frequencies
in the result

• This produces a much faster
convergence rate compared to
other preconditioners

• This method is also highly scalable
unlike the Jacobi

P. S. Sumant, A. C. Cangellaris, and N. R. Aluru. A node-based
agglomeration AMG solver for linear elasticity in thin bodies.
Coummunications in Numerical Methods in Engineering, 25:219-236,
2009.

	Slide Number 1
	Outline of Presentation
	Motivations and project aims
	Motivations and project aims
	WCSPH vs ISPH
	ISPH Pressure Poisson Equation
	Why use DualSPHysics?
	ISPH on the GPU in DualSPHysics implementation challenges
	Methodology – Files to change
	Methodology – Implementing the ISPH projection step
	Methodology – Implementing the ISPH projection step
	Methodology – Implementing the ISPH projection step
	Methodology – Inserting new computation functions for the PPE setup
	Methodology – Implementing a sparse linear solver library for solving the PPE
	Methodology – Implementing a sparse linear solver library for solving the PPE
	Methodology – Solving the PPE
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Methodology – Boundary conditions
	Methodology – Boundary conditions
	Research Challenges
	Research Challenges
	Results
	Slide Number 26
	Slide Number 27
	Conclusions and future work
	Conclusions and future work
	Slide Number 30
	Methodology – Inserting new computation functions for the PPE setup
	Methodology – Inserting new computation functions (for the PPE setup)
	Slide Number 33

