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Motivations and project aims 

Project aims: 
• To create a computational model for 

solving incompressible free-surface flows 
• For modelling breaking wave-structure 

impacts 

Wind Turbines 

Wave Energy Devices 

Tidal Stream Turbines 

Renewable energy is required! 
• Recent trends show an increase in offshore 

development for renewable energies (EWEA, 
2016) 

• Offshore environments are harsh and difficult 
to design efficiently and cost effectively 

The European Wind Energy Association (EWEA), Offshore 
statistics. (2016) doi: http://www.ewea.org/statistics/offshore/ 



Motivations and project aims 

Wave impact on a circular cylinder  
(Skillen et al., 2013) 

• Incompressible SPH (ISPH) is ideal 
to model free-surface flows with a 
smooth, noise-free pressure field. 

A. Skillen, S. Lind, P. K. Stansby, and B. D. Rogers, Incompressible smoothed particle hydrodynamics (SPH) with reduced temporal noise and 
generalised Fickian smoothing applied to body-water slam and efficient wave-body interaction. Comput. Methods Appl. M. (2013) 265:163-173. 

• However, ISPH has slow 
computational times. 
• Due to the need for the solution 

of a pressure Poisson equation 
matrix, Ax=B 

• Use of Graphics Processing Unit 
(GPU) to speed things up. 

• Hasn’t been investigated  properly before! 

Pressure Poisson equation matrix 



WCSPH vs ISPH 
• Traditional (Weakly-Compressible) SPH uses an artificial 

equation of state to link density and pressure, allowing 
density to vary by 1%.   

• ISPH enforces incompressibility and solves pressure 
through a pressure Poisson equation (PPE) in the form of a 
sparse matrix. 

The ISPH pressure Poisson equation 
is solved using a system matrix in the 

form Ax=B 

The WCSPH artificial equation of 
state 

• The ISPH PPE is the most computationally expensive part 
of the algorithm, in terms of both memory and time. 



ISPH Pressure Poisson Equation 

For a 1 million particle simulation, the PPE matrix has  
(when h/dx=1.3) : 
• Approximately 20 million non-zero elements in 2D 
• Approximately 100 million non-zero elements in 3D  
 
 To be solved every timestep 

For this project, the application of a 
breaking wave–structure impacts will 
require several million particles in a 

simulation 



Why use DualSPHysics? 

• DualSPHysics is a WCSPH code BUT there 
are still common functions and variables 
between ISPH and WCSPH that can be 
reused: neighbourlist and particle-
reordering,  kernel calculations etc. 

• Already highly optimised. 
• Implementing in CPU then transferring to GPU is easier than 

straight to GPU. 
• DualSPHysics has a high range of functionality: floating 

objects, wavemaker, DEM coupling, multi-phase etc. Not the 
biggest concern during implementation but relatively easy to 
include in the future. 



ISPH on the GPU in DualSPHysics 
implementation challenges 

ISPH on the GPU: 
• Memory expensive method for memory limited hardware. 
• Higher resolutions = Higher matrix condition numbers  
               = Longer PPE solve times 
• Solving Poisson equations for particle methods on GPUs is a 

relatively new  area for research  
 
Implementation into DualSPHysics: 
• Large piece of code - difficult to fully understand the inner 

workings 
• Challenges in identifying variables to keep/modify/extract 
• Maintaining consistency in the code (parameter values, 

precision etc.), especially between CPU and GPU. 
• Challenges in adhering to existing DualSPHysics code when 

adding new code. 
 
 
 

 
 



Methodology – Files to change 

CPU GPU 

Arrangement of 
computation 

JSphCpuSingle.cpp 
JSphCpuSingle.h 

JSphGpuSingle.cpp 
JSphGpuSingle.h 

Executing computation JSphCpu.cpp 
JSphCpu.h 

JSphGpu.ker.cu 
JSphGpu_ker.h 

Adding  new variables JSphCpu.h JSphGpu.h 

Adding new memory JSphCpu.cpp JSphGpu.cpp 
 

Adding new parameters JSph.cpp 
JSph.h 

Types.h 

JSph.cpp 
JSph.h 

Types.h 



Initial advection of particles 

Find intermediate velocity from 
viscous forces 

Find pressure from the pressure 
Poisson equation (PPE) 

Correct the velocity with 
pressure and external forces 

Correct the position with the 
new velocity 

Shift particles to improve 
distribution 

Methodology – Implementing the ISPH 
projection step 



Methodology – Implementing the ISPH 
projection step 

DualSPHysics Symplectic step 

Predictor 

Corrector 

Interaction_Forces() 

RunShifting() 

ComputeSymplecticPre() (Particle update) 

Interaction_Forces() 

RunShifting() 

ComputeSymplecticCorr() (Particle update) 



Methodology – Implementing the ISPH 
projection step 

Predictor 

Corrector 

Interaction_Forces 

RunShifting() 

ComputeSymplecticPre() (Particle update) 

Interaction_Forces 

RunShifting() 

ComputeSymplecticCorr() (Particle update) 

Init_Advection() 

SolvePPE() 

RunShifting() 

(ForcesPre) 

(ForcesCorr) 



Methodology – Inserting new computation 
functions for the PPE setup 

• Use existing code as a template and insert necessary 
equations within 

For Example: 
CPU – Begin loop through particles 

GPU – Begin loop through particles 

Other code that can be reused: 
• Calling the neighbour list for each particle 
• Calculating the particle interactions for each  



Methodology – Implementing a sparse 
linear solver library for solving the PPE 

• Currently using an open-source sparse matrix solver 
library for the CPU and GPU to setup a preconditioner for 
the matrix and solve the PPE system. 
 

• Using an appropriate open-source library to solve the 
matrix is good: 
• Highly optimised. 
• Saves coding time. 
• Provides different options for preconditioners and 

linear solvers. 



Methodology – Implementing a sparse 
linear solver library for solving the PPE 

K. Rupp, J. Weinbub, and F. Rudolf. Automatic performance Optimization in ViennaCL for GPUs. In POOSC ‘10: Proceedings of 
the 9th Workshop on parallel/High-Performance Object-Oriented Scientific Computing, pages 1-6, New York, NY, USA, 2010. 
ACM. 

• This project is currently using the ViennaCL Library (Rupp, 2010) 
• OpenMP and CUDA availablility 
 

• To include in DualSPHysics, insert the library file path into the 
properties: 

• CPU: C/C++ ->Additional Include Directories  
• GPU: JSphGpu_ker.cu  
  ->Properties->Custom Build Tool->Command Line 
 

• Insert necessary “#include” library files into where needed, 
JSphCpu.cpp / JSphGpu_ker.cu etc. 

• IF using for CPU and GPU, encase “#include” files with  
 “#ifndef _WITHGPU” “#endif” to avoid CPU/GPU conflicts 

  



Methodology – Solving the PPE 

• The ISPH PPE is a non-symmetric sparse matrix. 

• Common solvers in ISPH 
literature used are GMRES 
and BiCGSTAB. 

• High Resolutions = large 
condition numbers = Long solve 
times 

• The matrix represents a system in the 
form, Ax=B. 



Reducing the solution time: Preconditioning 
• Preconditioning lowers the condition number of system so it is 

faster to solve. For a preconditioner, applied to matrix A : 
• Ax=b -> PAPTPx=b 

 
• Preconditioning the matrix system is necessary for convergence 

of a solution at high resolutions. 
 

• In ISPH, the Jacobi preconditioner is typically used. 
 

• Jacobi preconditioning is simple and memory effective. 
 
But… 

Methodology – PPE preconditioning 



Methodology – PPE preconditioning 

Solution: 
• The Algebraic Multigrid (AMG) preconditioner scales 

much better at higher resolutions and provides a very 
quick solution time. 

X. Guo, S. J. Lind, B. D. Rogers, P. K. Stansby, and M. Ashworth, Efficient Massive Parallelisation for Incompressible Smoothed Particle 
Hydrodynamics with 108 Particles, Proceedings of the 8th international SPHERIC workshop (2013)  

 
• Guo et al. (2013) has shown the Jacobi does not scale 

well for high resolutions and may not even converge to 
a solution. 
 

• Instead he uses an Algebraic Multigrid preconditioner. 
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Methodology – PPE preconditioning 

Jacobi: 270,891 particles Jacobi: 1,577,091 particles 

AMG: 1,577,091 particles 



Methodology – Boundary conditions 

• Taking advantage of the existing fixed dummy particle 
generation in GenCase and DualSPHysics. 

 
• Dummy particles are: 

• Simple for parallel implementation 
• Can deal with complex geometries 

 
• However, still need to be modified for the ISPH to include 

Neumann boundary conditions for the PPE matrix. 



Methodology – Boundary conditions 
Fluid Domain 

Physical boundary particles 
• Excluded from boundary velocity interpolation 

Solid boundary particles 
• Act as normal fixed particles 

Neumann boundary particles 
• Each Neumann particle pressure = closest 

solid boundary particle pressure + dp/dn 
• Ensures exact “mirroring” across Neumann 

boundary line  



Research Challenges 
• Getting the ISPH formulation right! No ISPH literature using a 

combination of: 
• Wendland Kernel 
• Dummy boundary particles 
• Kinematic viscosity as low as 10-6m2/s 

• Implementing linear solver libraries – some more demanding 
than others, mixed level of documentation 

• Invested 6 months into finding out why the parallel MIS2-
AMG preconditioner for the GPU failed to consistently work 
with ISPH, which has now been corrected.  

• CPU code to GPU code not always straightforward – some 
differences in implementation 

• Making sure CPU and GPU code give the same/similar results – 
mixed precision issues (maintaining consistency) 



Researching ISPH on the GPU has opened up many other 
new and exciting possible avenues of research: 

• The on going development of ISPH in general 
• ISPH for higher resolutions and the challenges 

associated with it 
• The solution of the ISPH PPE at high resolutions: 

• In particular, on the GPU 
• Preconditioning Poisson equation matrices for 

particle methods. 
• In particular, on the GPU 

Research Challenges 

Despite the on going challenges, the rewards are high 



Results 
CPU 
Intel i-7 4790 processor 
Clockspeed: 3.6 GHz 
Cores: 4 
Threads: 8 
OpenMP enabled 

GPU 
Nvidia GeForce GTX 980 
Clockspeed: 1.126 GHz 
CUDA Cores: 2048 
 

• Wendland kernel: h=1.8dp 
 

ViennaCL Library: 
• Linear solver: BiCGStab, tolerance = 10-5 



SPHERIC Benchmark Test Case 6 Moving Box, Re=150 



Dambreak 



Conclusions and future work 
Project aim: to develop a solver for incompressible free-surface 
flows capable of modelling breaking wave-structure impacts 
• To achieve the project aim, a novel method of implementing 

ISPH on the GPU is being used, DualSPHysics is the vehicle used 
to create the model. 

 
• The main idea for converting DualSPHysics is to use as much as 

possible of what is already available. 
• This is also applies for the use of an open-source linear 

solver library for the PPE. 
 

• Current work already shows a significant improvement in speed 
and resolution capability from current ISPH literature. 
 

• Lots of new research can be made with an accelerated ISPH. 
 



Future work: 
 

• Fix bugs 
• Currently on about the “10th last bug”…   

 
• The model needs to be extended to 3D. 

 
• More rigorous analysis and accuracy testing needs to be done 

to fully validate the model. 

Conclusions and future work 



Thank you 
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Any questions? 



Methodology – Inserting new computation 
functions for the PPE setup 

CPU – Call p1 neighbours 

CPU – Call p2 neighbours 

Exclude ‘cellinitial’ for 
boundary neighbours 

Exclude ‘cellinitial’ for 
boundary neighbours 

//Insert  __DEVICE__ function for particle interaction equation here 



Methodology – Inserting new computation 
functions (for the PPE setup) 

CPU – p1 interact with p2 

//Insert equations here 

GPU – p1 interact with p2 

//Insert equations here 

//Call device function for particle interaction here { 



Algebraic Multigrid (AMG) 

A quick Algebraic Multigrid (AMG) overview: 
• The preconditioner breaks the matrix down into different 

“levels” of fineness, the original matrix is the “finest level” 

The AMG creates different levels of a 
matrix (Sumant et al., 2009) 

• The different levels will reduce 
errors of high and low frequencies 
in the result 

• This produces a much faster 
convergence rate compared to 
other preconditioners 

• This method is also highly scalable 
unlike the Jacobi 

P. S. Sumant, A. C. Cangellaris, and N. R. Aluru. A node-based 
agglomeration AMG solver for linear elasticity in thin bodies. 
Coummunications in Numerical Methods in Engineering, 25:219-236, 
2009. 
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